Systematic Review: Vulnerability of Metabolic Syndrome in COVID-19

Jump To References Section


  • Department of Dietetics and Applied Nutrition, Amity University Haryana, Gurgaon - 122 412 ,IN ORCID logo
  • Department of Food Science and Nutrition, Banasthali Vidyapith, Rajasthan - 302 001 ,IN



SARS-CoV-2, COVID-19, metabolic syndrome, inflammation, pandemic, infection


SARS-CoV-2 infection has become a widely spread disease around the world causing rapid hospitalization and death, especially in people with metabolic syndrome. There is very limited literature that goes to present the clinical implications and management of metabolic syndrome in this pandemic. Hence an attempt has been made towards meeting this end. A literature review has been done extracting articles from scopus database following PRISMA guidelines. The manuscripts were studied to identify articles that report metabolic syndrome and its components in COVID-19 infection. A total of 25 manuscripts were included in this systematic review. These studies report systematic inflammation and organ damage in metabolic syndrome that has up regulated SARS-CoV-2 infection. Various treatment strategies have also been suggested and hypothesized. The results of this analysis indicate that patients suffering from metabolic syndrome are vulnerable to COVID-19 owing a sequence of complications.


Download data is not yet available.


Metrics Loading ...



How to Cite

Dhawan, D., & Sharma, S. (2021). Systematic Review: Vulnerability of Metabolic Syndrome in COVID-19. The Indian Journal of Nutrition and Dietetics, 58(3), 419–431.



Review Articles
Received 2021-03-03
Accepted 2021-05-29
Published 2021-09-07



Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J. C., James, W. P., Loria, C. M., Smith, S. C., Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, & amp; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circul., 2009, 120, 1640-1645. DOI:

Andersen, C.J., Murphy, K.E. And Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. (Bethesda, Md.)., 2016, 7, 66-75. DOI:

Fantuzzi, G., Mazzone, T. Adipose Tissue and Adipokines in Health and Disease. Illustrated edn., Humana Press, Totowa, NJ, 2007. DOI:

Milner, J.J. and Beck, M.A. The impact of obesity on the immune response to infection. Proc. Nutr. Soc., 2012, 71, 298-306. DOI:

Esfahani, M., Movahedian, A., Baranchi, M. and Goodarzi, M.T. Adiponectin: an adipokine with protective features against metabolic syndrome. Ira. J. Bas. Med. Sci., 2015, 18, 430-442.

Luo, Y. And Liu, M. Adiponectin: A versatile player of innate immunity. J. Molec. cell Biol., 2016, 8, 120-128. DOI:

Wolf, A.M., Wolf, D., Rumpold, H., Enrich, B. And Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun., 2004, 323, 630-635. DOI:

Kim, K.Y., Kim, J.K., Han, S.H., Lim, J.S., Kim, K.I., Cho, D.H., Lee, M.S., Lee, J.H., Yoon,D.Y., Yoon, S.R., Chung, J.W., Choi, I., Kim, E. and Yang, Y. Adiponectin is a negative regulator of NK cell cytotoxicity. J. Immunol. (Baltimore, Md. : 1950), 2006, 176, 5958-5964. DOI:

Ziegler-Heitbrock, H.W., Wedel, A., Schraut, W., Ströbel, M., Wendelgass, P., Sternsdorf, T., Bäuerle, P.A., Haas, J.G. and Riethmüller, G. Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J. Biolog. Chem., 1994, 269, 17001-17004. DOI:

Gruzdeva, O., Borodkina, D., Uchasova, E., Dyleva, Y. and Barbarash, O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes, Metab. Synd. Obes., 2019, 12, 191-198. DOI:

Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R. and Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immuno-suppression. Nature, 1998, 394, 897-901. DOI:

Zarkesh-Esfahani, H., Pockley, G., Metcalfe, R. A., Bidlingmaier, M., Wu, Z., Ajami, A., Weetman, A.P., Strasburger, C.J. and Ross, R.J. High- dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol. (Baltimore, Md. : 1950)., 2001, 167, 4593-4599. DOI:

Yang, H., Youm, Y.H., Vandanmagsar, B., Rood, J., Kumar, K.G., Butler, A.A. and Dixit, V.D. Obesity accelerates thymic aging. Blood, 2009, 114, 3803-3812. DOI:

Barbu-Tudoran, L., Gavriliuc, O.I., Paunescu, V. and Mic, F.A. Accumulation of tissue macrophages and depletion of resident macrophages in the diabetic thymus in response to hyperglycemia-induced thymocyte apoptosis. J. Diabetes. Complic., 2013, 27, 114-122. DOI:

Howard, J.K., Lord, G.M., Matarese, G., Vendetti, S., Ghatei, M.A., Ritter, M. A., Lechler, R.I. and Bloom, S.R. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest., 1999, 104, 1051-1059. DOI:

Bredella, M.A., Torriani, M., Ghomi, R.H., Thomas, B.J., Brick, D.J., Gerweck, A.V., Rosen, C. J., Klibanski, A. and Miller, K.K. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obes. (Silver Spring, Md.)., 2011, 19, 49-53. DOI:

Wu, C.L., Diekman, B.O., Jain, D. and Guilak, F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int. J. Obes., 2013, 37, 1079-1087. DOI:

Hegde, V. and Dhurandhar, N.V. Microbes and obesity- inter relationship between infection, adipose tissue and the immune system. Clinical microbiology and infection: The official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2013, 19, 314-320. DOI:

Wang, C., Seifert, R.A., Bowen-Pope, D.F., Kregel, K.C., Dunnwald, M. and Schatteman, G. C. Diabetes and aging alter bone marrow contributions to tissue maintenance. Int. J. Physiol. Pathophysiol. Pharmacol., 2009, 2, 20-28.

Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C. and Ketheesan, N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunol., 2015, 144, 171-185. DOI:

Khan, Y., Lalchandani, A., Gupta, A.C., Khadanga, S. and Kumar, S. Prevalence of metabolic syndrome crossing 40% in Northern India: Time to act fast before it runs out of proportions. J. Family Med. Primary Care., 2018, 7, 118-123. DOI:

Sharma, A., Tiwari, S., Deb, M.K. and Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Age., 2020, 56, 106054. DOI:

Ciotti, M., Angeletti, S., Minieri, M., Giovannetti, M., Benvenuto, D., Pascarella, S., Sagnelli, C., Bianchi, M., Bernardini, S. and Ciccozzi, M. COVID-19 Outbreak: An Overview. Chemothera., 2019, 64, 215-223. DOI:

Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nature Metabol., 2020, 2, 572-585. DOI:

Bansal, R., Gubbi, S. and Muniyappa, R. Metabolic syndrome and COVID 19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinol., 2020, 161, 112. DOI:

Costa, F.F., Rosário, W.R., Ribeiro Farias, A.C., de Souza, R.G., Duarte Gondim, R.S. and Barroso, W.A. Metabolic syndrome and COVID- 19: An update on the associated comorbidities and proposed therapies. Diabetes Metabol. Synd., 2020, 14, 809-814. DOI:

Mauvais-Jarvis F. Aging, male sex, obesity and metabolic inflammation create the perfect storm for COVID-19. Diabetes, 2020, 69, 1857-1863. DOI:

Rokkam, V., Vegunta, R., Prudhvi, K., Vegunta, R., Kotagiri, R., Boregowda, U. and Kutti Sridharan, G. Quot: Weighing and quot; the risks and benefits - Thromboprophylaxis challenges in obese COVID-19 patients. Obes. Med., 2020, 19, 100284. DOI:

AbdelMassih, A.F., Ye, J., Kamel, A., Mishriky, F., Ismail, H.A., Ragab, H.A., El Qadi, L., Malak, L., Abdu, M., El-Husseiny, M., Ashraf, M., Hafez, N., AlShehry, N., El-Husseiny, N., AbdelRaouf, N., Shebl, N., Hafez, N., Youssef, N., Afdal, P., Hozaien, R. and Fouda, R. A multicenter consensus: A role of furin in the endothelial tropism in obese patients with COVID-19 infection. Obes. Med., 2020, 19, 100281. DOI:

Wang, S., Ma, P., Zhang, S., Song, S., Wang, Z., Ma, Y., Xu, J., Wu, F., Duan, L., Yin, Z., Luo, H., Xiong, N., Xu, M., Zeng, T. and Jin, Y. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi-centre retrospective study. Diabetol., 2020, 63, 2102-2111. DOI:

Smith, M., Honce, R. and Schultz-Cherry, S. Metabolic syndrome and viral pathogenesis: Lessons from influenza and coronaviruses. J. Virol., 2020, 94, e00665-20. 128/JVI.00665-20 DOI:

Roy, D., Ramasamy, R. and Schmidt, A.M. Journey to a receptor for advanced glycation end products connection in severe acute respiratory syndrome coronavirus 2 infection: With stops along the way in the lung, heart, blood vessels, and adipose tissue. Arteriosclerosis, Thrombosis. Vascular Biol., 2021, 41, 614-627. DOI:

Petersen, A., Bressem, K., Albrecht, J., ThieíŸ, H.M., Vahldiek, J., Hamm, B., Makowski, M.R., Niehues, A., Niehues, S.M. and Adams, L.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabol. Clin. Experiment., 2020, 110, 154317. DOI:

Kornilov, S.A., Lucas, I., Jade, K., Dai, C.L., Lovejoy, J.C. and Magis, A.T. Plasma levels of soluble ACE2are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Critical care (London, England)., 2020, 24, 452. DOI:

Hooper P.L. COVID-19 and heme oxygenase: Novel insight into the disease and potential therapies. Cell Stress Chaperones, 2020, 25, 707-710. DOI:

Uzzan, M., Corcos, O., Martin, J.C., Treton, X. and Bouhnik, Y. Why is SARS-CoV-2 infection more severe in obese men? The gut lymphatics - Lung axis hypothesis. Med. Hypothe., 2020, 144, 110023. DOI:

Hariyanto, T.I. and Kurniawan, A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metabol. Synd., 2020, 14, 1463-1465. DOI:

Chiappetta, S., Sharma, A.M., Bottino, V. and Stier, C. COVID-19 and the role of chronic inflammation in patients with obesity. Int. J. Obes., 2020, 44, 1790-1792. DOI:

Bornstein, S.R., Dalan, R., Hopkins, D., Mingrone, G. and Boehm, B.O. Endocrine and metabolic link to coronavirus infection. Nature Rev. Endocrinol., 2020, 16, 297-298. 0353-9 DOI:

Yamasaki H. Blood nitrate and nitrite modulating nitric oxide bioavailability: Potential therapeutic functions in COVID-19. Nitric Oxide. Boil. Chem., 2020, 103, 29-30. DOI:

Bertocchi, I., Foglietta, F., Collotta, D., Eva, C., Brancaleone, V., Thiemermann, C. and Collino, M. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: Lessons for drug repurposing. Br. J. Pharmacol., 2020, 177, 4921-4930. DOI:

Khunti, S., Khunti, N., Seidu, S. and Khunti, K. Therapeutic uncertainties in people with cardiometabolic diseases and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19). Diabetes Obes. Metabol., 2020, 22, 1942-1945. DOI:

Saban-Ruiz, J. and Ly-Pen, D. COVID-19: a personalized cardiometabolic approach for reducing complications and costs, the role of aging beyond topics. J. Nutr. Heal. Agin., 2020, 24, 550-559. DOI:

Demidowich, A.P., Levine, J.A., Apps, R., Cheung, F.K., Chen, J., Fantoni, G., CHI Consortium, Patel, T.P. and Yanovski, J.A. Colchicines effects on metabolic and inflammatory molecules in adults with obesity and metabolic syndrome: results from a pilot randomized controlled trial. Int. Journal of obes., 2020, 44, 1793-1799. DOI:

Chocair, P.R., Neves, P.D.M.M., Pereira, L.V.B., Mohrbacher, S., Oliveira, E.S., Nardotto, L.L., Bales, A.M., Sato, V.A.H., Ferreira, B.M.C. and Cuvello Neto, A.L. Covid-19 and Metabolic Syndrome. Revista Da Associacao Medica Brasileira, 2020, 66, 871-875. DOI:

Almerie, M.Q. and Kerrigan, D.D. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Med. Hypothe., 2020, 143, 109883. DOI:

Torrinhas, R.S., Calder, P.C., Lemos, G.O. and Waitzberg, D.L. Parenteral fish oil: An adjuvant pharmacotherapy for coronavirus disease 2019?. Nutrition (Burbank, Los Angeles County, Calif.), 2021, 81, 110900. DOI:

Singh V. Can vitamins, as epigenetic modifiers, enhance immunity in covid-19 patients with non-communicable disease?. Curr. Nutr. Rep., 2020, 9, 202-209. DOI:

El-Missiry, M.A., El-Missiry, Z. and Othman, A.I. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur. J. Pharmacol., 2020, 882, 173329. DOI: