Butyrate as a Potential Preventive Therapy for Obesity

Jump To References Section


  • ,IN
  • ,IN




Obesity, gut microbiota, butyrate, GPCRs, HDAC inhibitor, dietary intervention


Due to its grave pathological role of obesity, comprehensive research is being continued to find out the causative factors involved in it. Recent advances in this field are increasingly recognized that there is a connection between diet, gut microbiota, intestinal barrier function and the low-grade inflammation that characterize the progression from obesity to metabolic disturbances, making dietary strategies to modulate the intestinal environment is important. In this context, the ability of some Gram-positive anaerobic bacteria to produce the shortchain fatty acid butyrate is impressive. A lower abundance of butyrate-producing bacteria has been associated with metabolic risk in humans. Recent studies suggest that butyrate might have been linked with metabolic risk in humans, and recommend that butyrate might have an anti-inflammatory mediator in metabolic diseases, and the potential of butyrate can alleviate obesity-related metabolic complications, possibly due to its ability to enhance the intestinal barrier function. Endogenous butyrate synthesis, delivery, and absorption by colonocytes have been well studied. Butyrate exerts its function by serving as a histone deacetylase (HDAC) inhibitor or signaling through several G Protein-Coupled Receptors (GPCRs). Latterly butyrate has gained selective attention for its favorable effects on intestinal homeostasis and energy metabolism. With anti-inflammatory properties, butyrate improves intestinal barrier function and mucosal immunity. Growing proof has highlighted the influence of butyrate on obesity. In this review the current knowledge on the features of butyrate, especially its potential effects and mechanisms involved in intestinal health and obesity. Here we review and discuss the potentials of butyrate as an anti-inflammatory mediator in obesity and the potential for dietary interventions increasing intestinal availability of butyrate.


Download data is not yet available.


Metrics Loading ...



How to Cite

Meena Kumari, P., & Muthukumar, S. P. (2019). Butyrate as a Potential Preventive Therapy for Obesity. The Indian Journal of Nutrition and Dietetics, 56(4), 439–454. https://doi.org/10.21048/ijnd.2019.56.4.23688



Review Articles
Received 2019-05-13
Accepted 2019-08-08
Published 2019-10-01



Xavier Pi-Sunyer, M.D. The medical risks of obesity. Postgrad. Med., 2009, 121, 21-23 [PMID: 19940414 DOI:10.3810/pgm.2009.11.2074]

Smith, K.B. and Smith, M.S. Obesity statistics. Prim. care., 2016, 43, 121-135[PMID: 26896205 DOI: 10.1016/j.pop.2015.10.001]

Nagwa Abdallah Ismail, Shadia H. Ragab, Abeer Abd ElBaky, Ashraf R.S. Shoeib, Yasser Alhosary and Dina Fekry. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch. Med. Sci., 2011, 7, 501-507 [PMID: 22295035 DOI: 10.5114/aoms.2011.23418]

Den Besten, G., van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.J. and Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota and host energy metabolism. J. Lipid Res., 2013, 54, 2325-2340. [PMID: 23821742 DOI: 10.1194/jlr. R036012]

Shoaie, S., Karlsson, F., Mardinoglu, A., Nookaew, I., Bordel, S. and Nielsen, J. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep., 2013, 3, 2532 [PMID: 23982459 DOI: 10.1038/srep02532]

Lagier, J.C., Hugon, P., Khelaifia, S., Fournier, P.E., La Scola, B. and Raoult, D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota.Clin. Microbiol. Rev., 2015, 28, 237-264. [PMID: 25567229 DOI:10.1128/CMR.00014-14]

Mokhtari, Z., Gibson, D.L. and Hekmatdoost, A. Nonalcoholic fatty liver disease, the gut microbiome and diet. Adv. Nutr., 2017, 8, 240-252. [PMID:28298269. DOI:10.3945/ an.116.013151].

Haenen, D., Zhang, J., da Silva, C.S., Bosch, G., van der Meer, I.M., van Arkel, J., van den Borne, J.J., Gutiérrez, O.P., Smidt, H. and Kemp, B. A diet high in resistant starch modulates microbiota composition, SCFA concentrations and gene expression in pig intestine. J. Nutr., 2013, 143, 274-283. [PMID:23325922 DOI:10.3945/jn.112.169672 ].

Louis, P. and Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota.

Environ. Microbiol., 2017, 19, 29-41. [PMID: 27928878 DOI: 10.1111/1462-2920.13589]

Trachsel, J., Bayles, D.O., Looft, T., Levine, U.Y. and Allen, H.K. Function and phylogeny of bacterial butyryl coenzyme a: acetate transferases and their diversity in the proximal colon of swine. Appl. Environ. Microbiol., 2016, 82, 6788–9898 [PMID:27613689 DOI:10.1128/ AEM.02307-16].

Vital, M., Howe, A.C. and Tiedje, J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. M. Bio., 2014, 5, e00889–008814. [PMID: 24757212 DOI: 10.1128/mBio.00889-14].

Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell., 2016, 165, 1332-1345 [PMID:27259147 DOI:10.1016/j.cell.2016.05.041].

Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., Muir, A.I., Wiggleswort, M.J., Kinghorn, I., Fraser, N.J., et al. The orphan G protein–coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol.Chem., 2003, 278, 11312–11319 [PMID:12496283 DOI:10.1074/jbc.M211609200].

Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M, McKenzie, C.I., Hijikata, A. and Wong, C. Metabolite-sensing receptorsGPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun., 2015, 6, 6734-6746. [PMID:25828455 DOI:10.1038/ncomms7734].

Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P.D., Manicassamy, S. and Munn, D.H. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis.Immun., 2014, 40, 128-139 [PMID:24412617 DOI:10.1016/j.immuni.2013.12.007] .

Chang, P.V., Hao, L., Offermanns, S. and Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad.Sci., USA 2014, 111, 2247-2252 [PMID:24390544 DOI:10.1073/pnas.1322269111].

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. and Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions.Sci., 2009, 325, 834-840 [PMID:19608861 DOI:10.1126/science.1175371].

Park, J., Kim, M., Kang S.G., Jannasch, A.H., Cooper, B., Patterson, J. and Kim, C.H. Short chain fatty acids induce both effectors and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal. Immunol., 2015, 8, 80.[PMID:24917457 DOI: 10.1038/mi.2014.44].

Singh, N., Thangaraju, M., Prasad, P.D, Martin, P.M., Lambert, N.A, Boettger, T., Offermanns, S.

and Ganapathy, V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem., 2010, 285, 27601-27608. [PMID: 20601425 DOI: 10.1074/ jbc.M110.102947].

Shi, L.Z., Wang, R.N., Huang, G.H., Vogel, P., Neale, G., Green, D.R. and Chi, H.B. HIF1 alphadependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T(H)17 and T-reg cells. J. Exp. Med., 2011, 208, 1367-1376.

Meijer, K., de Vos, P. and Priebe, M.G. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr. Opin. Clin. Nutr. Metab. Care., 2010, 13, 715721. [PMID:20823773 DOI: 10.1097/MCO.0b013e32833eebe5].

Ma, X., Fan, P., Li, L., Qiao, S., Zhang, G. and Li, D. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 2012, 90, 266268 [PMID: 23365351 DOI: 10.2527/jas.50965].

Venkatraman, A., Ramakrishna, B., Shaji, R., Kumar, N.N., Pulimood, A. and Patra, S. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-ï«B. Am. J. Physiol.Gastrointest. Liver Physiol., 2003, 285, G177-184. [PMID:12637250 DOI:10.1152/ ajpgi.00307.2002].

Wang, W., Yang, Q., Sun, Z., Chen, X., Yang, C. and Ma, X. Advance of interactions between exogenous natural bioactive peptides and intestinal barrier and immune responses. Curr.Protein Pept. Sci., 2015, 16, 574-575. [PMID: 26283417].

Dubuquoy, L., Rousseaux, C., Thuru, X., Peyrin-Biroulet, L., Romano, O., Chavatte, P., Chamaillard, M. and Desreumaux, P. PPARï§ï€ as a new therapeutic target in inflammatory bowel diseases. Gut., 2006, 55, 1341-1349. [PMID:16905700 DOI:10.1136/gut.2006.093484].

Schwab, M., Reynders, V., Loitsch, S., Steinhilber, D., Stein, J. and Schröder, O. Involvement of different nuclear hormone receptors in butyrate mediated inhibition of inducible NF-ï«B signalling. Mol. Immunol., 2007, 44, 3625-3632. [PMID:17521736 DOI:10.1016/ j.molimm.2007.04.010].

Elamin, E.E., Masclee, A.A., Dekker, J., Pieters, H.J. and Jonkers, D.M. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J. Nutr., 2013, 143, 1872-1881. [PMID:24132573 DOI:10.3945/jn.113.179549].

Willemsen, L., Koetsier, M., Van Deventer, S. and Van Tol, E. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut., 2003, 52, 1442-1447.

Peng, L., Li, Z.R., Green, R.S., Holzman, I.R. and Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 2009, 139, 1619-1625. [PMID:19625695 DOI:10.3945/jn.109.104638].

Huang, X., Li, Z., Zhu, L., Huang, H., Hou, L. and Lin, J. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. J. Pediat. Gastroenterol. Nutr., 2014, 59, 264-269. [PMID:24625969 DOI:10.1097/MPG.0000000000000369].

Brahe, L.K., Astrup, A. and Larsen, L.H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev., 2013, 14, 950-959. [PMID:23947604 DOI:10.1111/obr.12068].

Hamer, H.M., Jonkers, D.M., Bast, A., Vanhoutvin, S.A., Fischer, M.A., Kodde, A., Troost, F.J., Venema, K. and Brummer, R.J.M. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin. Nutr., 2009, 28, 88-93. [PMID:19108937 DOI:10.1016/ j.clnu.2008.11.002].

Vinolo, M.A., Rodrigues, H.G., Hatanaka, E., Hebeda, C.B., Farsky, S.H. and Curi, R. Shortchain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci., 2009, 117, 331-338. [PMID:19335337 DOI:10.1042/CS20080642].

Canani, R.B., Di Costanzo, M. and Leone, L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin. Epigenetics, 2012, 4, 4.

Vinolo, M.A., Rodrigues, H.G., Festuccia, W.T., et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am. J. Physiol. Endocrinol. Metab., 2012, 303, E272-E282. doi: 10.1152/ajpendo.00053.2012 [PMID: 22414433 DOI:10.1186/18687083-4-4].

Tappenden, K.A., Albin, D.M., Bartholome, A.L. and Mangian, H.F. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J. Nutr., 2003, 133, 3717-3720.[PMID:14608102 DOI:10.1093/jn/133.11.3717]'

Lin, H.V., Frassetto, A., Kowalik, E.J. Jr. et al. Butyrate and propionate protect against dietinduced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One., 2012, 7, e35240. [PMID:22506074 DOI:10.1371/journal.pone.0035240].

Inan, M.S., Rasoulpour, R.J., Yin, L., Hubbard, A.K., Rosenberg, D.W. and Giardina, C. The luminal short-chain fatty acid butyrate modulates NF-kappa B activity in a human colonic epithelial cell line. Gastroenterol., 2000, 118, 724-734. [PMID:10734024].

Luhrs, H., Gerke, T., Muller, J.G., et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol., 2002, 37, 458-466.[PMID:11989838].

Kinoshita, M., Suzuki, Y. and Saito, Y. Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation. Biochem. Biophys. Res. Commun., 2002, 293, 827-831.[PMID:12054544 DOI:10.1016/S0006-291X(02)00294-2].

Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J. Review article: the role of butyrate on colonic function. Aliment Pharmacol. Ther., 2008, 27, 104-119. [PMID:17973645 DOI: 10.1111/ j.1365-2036.2007.03562.x].

Vrieze, A., Van Nood, E., Holleman, F., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol., 2012, 143, 913.e7-916.e7. [PMID:22728514 DOI: 10.1053/j.gastro.2012.06.031].

Qin, J., Li, Y., Cai, Z., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60. [PMID:23023125 DOI: 10.1038/nature11450].

Furet, J.P., Kong, L.C., Tap, J., et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers.Diabetes, 2010, 59, 3049-3057. [PMID:20876719 DOI: 10.2337/db10-0253].

Sokol, H,, Pigneur, B., Watterlot, L., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients. Proc.Natl. Acad. Sci., USA 2008, 105, 16731-16736. [ PMID:18936492 DOI: 10.1073/ pnas.0804812105].

Marcil, V., Delvin, E., Garofalo, C. and Levy, E. Butyrate impairs lipid transport by inhibiting microsomal triglyceride transfer protein in caco-2 cells. J. Nutr., 2003, 133, 2180-2183. [PMID: 12840175 DOI:10.1093/jn/133.7.2180].

Manduteanu, I. and Simionescu, M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J. Cell Mol. Med., 2012, 16, 1978-1990. [PMID:22348535 DOI: 10.1111/ j.1582-4934.2012 .01552.x].

Grummer, R.R. Effect of feed on the composition of milk fat. J. Dairy Sci., 1991, 74, 3244-3257.

[PMID:1779073 DOI: 10.3168/jds.S0022- 0302(91)78510-X].

Joint FAO/WHO Expert Committee on Food Additives (JECFA). Combined Compendium of Food Additive Specifications. All Specifications Monographs from the 1st to the 65th Meeting (1956–2005) 3, Food Additives P-Z. 1st ed. FAO; 2005.

Roda, A., Simoni, P., Magliulo, M., et al. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J. Gastroenterol., 2007, 13, 1079-1084.[PMID:17373743 DOI:10.3748/wjg.v13.i7.1079].

Mortensen, P.B. and Clausen, M.R. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl., 1996, 216, 132-148 [PMID:8726286].

Englyst, H.N. and Cummings, J.H. Digestion of the polysaccharides of some cereal foods in the human small intestine. Am. J. Clin. Nutr., 1985, 42, 778-787 [PMID:2998174 DOI:10.1093/ ajcn/42.5.778].

Martinez, I., Kim, J., Duffy, P.R., Schlegel, V.L. and Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One., 2010, 5, e15046. [PMID:21151493 DOI: 10.1371/journal.pone.0015046].

Van Munster, I.P., Tangerman, A.and Nagengast, F. M. Effect of resistant starch on colonic fermentation, bile acid metabolism and mucosal proliferation. Dig. Dis. Sci., 1994, 39, 834842. [PMID: 8149850].

Schwiertz, A., Lehmann, U., Jacobasch, G. and Blaut, M. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine.J. Appl. Microbiol., 2002, 93, 157-162. [PMID:12067385].

Walker, A.W., Ince, J., Duncan, S.H. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME. J., 2011, 5, 220-230. [PMID: 20686513 DOI: 0.1038/ ismej. 2010.118].

Beards, E., Tuohy, K. and Gibson, G. Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe., 2010, 16, 420-425. [PMID:20553905 DOI: 10.1016/j.anaerobe.2010.05.006].

Falony, G., Vlachou, A., Verbrugghe, K. and De Vuyst, L. Cross feeding between Bifidobacterium longum BB536 and acetate converting, butyrate-producing colon bacteria during growth on oligofructose. Appl. Environ. Microbiol., 2006, 72, 7835-7841. [ PMID:17056678 DOI: 10.1128/ AEM.01296-06].

Duncan, S.H., Scott, K.P., Ramsay, A.G., et al. Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl. Environ. Microbiol., 2003, 69, 1136-1142. [PMID:12571040].

De Vuyst, L. and Leroy, F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production.Int. J. Fd. Microbiol., 2011, 149, 73-80. [PMID: 21450362 DOI: 10.1016/j.ijfoodmicro. 2011.03.003].

Louis, P., Scott, K.P., Duncan, S.H. and Flint, H.J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol., 2007, 102, 1197-1208. [PMID:17448155 DOI: 10.1111/j.1365- 2672.2007.03322.x].

Ramirez-Farias, C., Slezak, K., Fuller, Z., Duncan, A., Holtrop, G. and Louis, P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr., 2009, 101, 541–550. [PMID:18590586 DOI: 10.1017/ S0007114508019880].

Dewulf, E.M., Cani, P.D., Claus, S.P. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut., 2013, 62, 1112-1121. [PMID:23135760 DOI: 10.1136/gutjnl-2012-303304].

Bodinham, C.L., Frost, G.S. and Robertson, M.D. Acute ingestion of resistant starch reduces food intake in healthy adults. Br. J. Nutr., 2010, 103, 917-922. [PMID:19857367 DOI:10.1017/ S0007114509992534].

Roy, C.C., Kien, C.L., Bouthillier, L. and Levy, E. Short-chain fatty acids: ready for prime time?Nutr. Clin. Pract., 2006, 21, 351-366 [PMID:16870803 DOI:10.1177/0115426506021004351].

Walker, A.W., Duncan, S.H., McWilliam Leitch, E.C., Child, M.W. and Flint, H.J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol., 2005, 71, 3692-3700.[PMID:16000778 DOI: 10.1128/AEM.71.7.3692-3700 .2005].

Duncan, S.H., Belenguer, A., Holtrop, G., Johnstone, A.M., Flint, H.J. and Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol., 2007, 73, 1073-1078.[PMID: 17189447 DOI: 10.1128/AEM.02340-06].

Due, A., Toubro, S., Skov, A.R. and Astrup, A. Effect of normalfat diets, either medium or high in protein, on body weight in overweight subjects: a randomised 1-year trial. Int. J. Obes. Relat.Metab. Disord., 2004, 28, 1283-1290.[PMID:15303109 DOI: 10.1038/sj.ijo.0802767].

Larsen, T.M., Dalskov, S.M., van Baak, M., et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med., 2010, 363, 2102-2113. [PMID: 24675714 DOI: 10.1056/ NEJMoa1007137].

Windey, K., De Preter, V. and Verbeke, K. Relevance of protein fermentation to gut health. Mol.Nutr. Fd. Res., 2012, 56, 184-196. [PMID:22121108 DOI: 10.1002/mnfr.201100542].

Russell, W.R., Gratz, S.W., Duncan, S.H., et al. High-protein, reduced-carbohydrate weightloss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin.Nutr., 2011, 93, 1062-1072. [PMID:21389180 DOI: 10.3945/ajcn.110.002188].

Bajka, B.H., Clarke, J.M., Cobiac, L. and Topping, D.L. Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats. Carcinogenesis, 2008, 29, 2169-2174.[PMID:18684730 DOI: 10.1093/carcin/bgn173].

Cani, P.D., Amar, J., Iglesias, M.A., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabet., 2007, 56, 1761-1772. [PMID:17456850 DOI: 10.2337/db06-1491].

Erridge, C., Attina, T., Spickett, C.M. and Webb, D.J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin.Nutr., 2007, 86, 1286-1292 [PMID:17991637 DOI:10.1093/ajcn/86.5.1286].

Amar, J., Burcelin, R., Ruidavets, J.B., et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr., 2008, 87, 1219-1223 [PMID:18469242 DOI:10.1093/ ajcn/87.5.1219].

Neyrinck, A.M., Possemiers, S., Verstraete, W., De Backer, F., Cani, P.D. and Delzenne, N.M.

Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem., 2012, 23, 51–59. [PMID:21411304 DOI:10.1016/j.jnutbio.2010.10.008].