Chemical Components in Smokeless Tobacco Products and Impact on Health

Authors

  • Harm Reduction Research and Innovation Centre [HRRIC], Virtualis Services Pvt Ltd., Mumbai – 400013, Maharashtra ORCID logo http://orcid.org/0000-0003-3127-1754
  • Harm Reduction Research and Innovation Centre [HRRIC], Virtualis Services Pvt Ltd., Mumbai – 400013, Maharashtra
  • Harm Reduction Research and Innovation Centre [HRRIC], Virtualis Services Pvt Ltd., Mumbai – 400013, Maharashtra

DOI:

https://doi.org/10.18311/ti/2021/v28i4/26489

Keywords:

Biological Mechanism, Disease Pathway, Hazard, Profiling, Smokeless Tobacco, Tobacco Constituents

Abstract

Smokeless Tobacco [SLT], a non-combustible form of tobacco, is consumed by 350 million people in 133 countries across the globe. Worldwide, Smokeless Tobacco products vary greatly in their formulations and chemical composition. Understanding of toxic and carcinogenic constituent variations in such products can provide valuable insights for the development of effective tobacco control policies. Though the assessment of SLT products has been done earlier, the information is not available in an inclusive and handy format as entire profiling. Hence, there is a vital need to develop a one-stop information source providing comprehensive information on SLT products. PubMed and Google scholar databases were systematically searched from 1995 till April 2020 for observational studies on Smokeless Tobacco products and their chemical components. The included studies were evaluated and data were extracted and reviewed.A wide variation was noted in the association of various diseases and specific Smokeless Tobacco product constituents based on their nature and inherent toxicity. The majority of chewing tobacco products displayed a higher risk for users.This review emphasizes the significant positive association of Smokeless Tobacco product components with health hazards. Pathways estimates for smokeless tobacco-associated disease need further analysis. The profiling of Smokeless Tobacco products also requires multi-centric well-designed studies. Further, the information would be a guide for researchers interested in the components of SLT products.

Downloads

Download data is not yet available.

References

Thakur JS, Paika R. Determinants of Smokeless Tobacco use in India. Indian J Med Res. 2018; 148:41–5. PMid: 30264753 PMCid: PMC6172920. https://doi.org/10.4103/ ijmr.IJMR_27_18.

IARC [International Agency for Research on Cancer]. Betelquid and areca-nut chewing and some areca-nut-derived nitrosamines, IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, France; 2004; 85. 2020. https://publications.iarc.fr/103.

SCENIHR [Scientific Committee on Emerging and Newly Identified Health Risks]. Scientific opinion on Health effects of Smokeless Tobacco products, European Commission, 2008. 2020. http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_013.pdf.

Stanfill SB, Connolly GN, Zhang L, Jia LT, Henningfield JE, Richter P, Lawler TS, Yusuf OA, Ashley DL, Watson CH. Global surveillance of oral tobacco products: Total nicotine, unionised nicotine and tobacco-specific N-nitrosamines. Tob Control. 2011; 20(3):e2. PMid: 21109685. https://doi.org/10.1136/tc.2010.037465.

IARC [International Agency for Research on Cancer]. Smokeless Tobacco and some tobacco-specific N-nitrosamines, IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, France. 2007; 89. 2020. http://monographs.iarc.fr/ENG/Monographs/vol89/index. php.

Moghbel N, Ryu B, Ratsch A, Steadman KJ. Nicotine alkaloid levels and nicotine to nornicotine conversion in Australian Nicotiana species used as chewing tobacco. Heliyon 2017; 3:e00469. PMid: 29264422 PMCid: PMC5727613. https://doi.org/10.1016/j.heliyon.2017.e00469.

Yuan JM, Gao YT, Wang R., Chen, M, Carmella SG, Hecht SS. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis. 2012; 33:804–9. PMid: 22298640 PMCid: PMC3384073. https://doi.org/10.1093/carcin/ bgs026.

Krusemann E, Visser WF, Cremers JWJM, Pennings JLA, Talhout R. Identification of flavour additives in tobacco products to develop a flavour library. Tob Control. 2017; 27(1):105–11. PMid: 28190004 PMCid: PMC5801651. https://doi.org/10.1136/tobaccocontrol-2016-052961.

Lisko JG, Stanfill SB, Watson CH. Quantitation of ten flavor compounds in unburned tobacco products. Anal Method. 2014; 6(13):4698–704. PMid: 26388954 PMCid: PMC4575278. https://doi.org/10.1039/C4AY00271G.

Pickworth WB, Rosenberry ZR, Gold W, Koszowski BJ. Nicotine absorption from Smokeless Tobacco modified to adjust pH. Addict Res Ther. 2014; 5:184. PMid: 25530912 PMCid: PMC4271311. https://doi.org/10.4172/2155- 6105.1000184.

Zitomer N, Rybak ME, Li Z, Walters MJ, Holman MR. Determination of Aflatoxin B1 in Smokeless Tobacco products by use of UHPLC-MS/MS. J Agric Food Chem. 2015; 63(41):9131–8. PMid: 26452144 PMCid: PMC5697909. https://doi.org/10.1021/acs.jafc.5b02622.

Knipstein B, Huang J, Barr E, Sossenheimer P, Dietzen D, Egner PA, et al. Dietary aflatoxin-induced stunting in a novel rat model: Evidence for toxin-induced liver injury and hepatic growth hormone resistance. Pediatr Res. 2015; 78(2):120–7. PMid: 25938735 PMCid: PMC4506701. https://doi.org/10.1038/pr.2015.84.

Lane KS. Aflatoxin, tobacco, ammonia and the p53 tumorsuppressor gene: Cancer’s Missing Link? Med Gen Med 1999; 1(2):E10. https://pdfs.semanticscholar.org/81cb/0a4d7ad80275ec471243e1a3dcabccf15b9f.pdf.

IARC [International Agency for Research on Cancer]. Agents classified by the IARC monographs, 2019; 1–123. 2020. http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf.

National Center for Biotechnology Information. PubChem Database. Aflatoxin B1, CID=186907. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Aflatoxin-B1.

FDA. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke, Established List. U.S. Food and Drug Administration, U.S. Department of Health and Human Services. 2012. 2020. http://www.fda.gov/downloads/TobaccoProducts/GuidanceComplianceRegulatoryInformation/UCM297981.pdf.

WHO [World Health Organisation]. Food safety digest- Aflatoxins. Department of Food Safety and Zoonoses. 2018. 2020. https://www.who.int/foodsafety/FSDigest_ Aflatoxins_EN.pdf.

FDA [Food and Drug Administration]. Compliance Policy Guide Sec. 638.100. Action Levels for Aflatoxins in Animal Food. 2019. 2020. https://www.fda.gov/regulatory- information/search-fda-guidance-documents/cpg-sec-683100-action-levels-aflatoxins-animal-feeds.

Inaba Y, Uchiyama S, Kunugita N. Spectrophotometric determination of ammonia levels in tobacco fillers of and sidestream smoke from different cigarette brands in Japan. Environ Health Prev Med. 2018: 23(15). PMid: 29703135 PMCid: PMC5923008. https://doi.org/10.1186/s12199-018-0704-5.

Padappayil RP, Borger J. Ammonia toxicity. Stat Pearls [Internet], Treasure Island [FL]: Stat Pearls Publishing. 2020 [Updated 2019 Oct 26]. 2020. https://www.ncbi.nlm. nih.gov/books/NBK546677/.

Stevenson T, Proctor RN Am J. Phillip Morris and the origins, spread and denial of nicotine freebasing. Public Health. 2008; 98(7):1184–94. PMid: 18511721 PMCid: PMC2424107. https://doi.org/10.2105/AJPH.2007.121657.

Watson CV, Blasini LV, Damian M, Watson CH. Method for the determination of ammonium in cigarette tobacco using ion chromatography. Regul Toxicol Pharmacol. 2015; 72:266. PMid: 25934256 PMCid: PMC5712451. https://doi.org/10.1016/j.yrtph.2015.04.019.

EPA [Environmental Protection Agency]. Toxicological Review of Ammonia [Noncancer Inhalation]. 2016. 2020. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0422tr.pdf.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Ammonia. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2004. 2020. https://www.atsdr.cdc.gov/toxprofiles/tp126.pdf.

van Amsterdam J, Sleijffers A, van Spiegel P, Blom R, Witte M, van de Kassteele J, et al. Effect of ammonia in cigarette tobacco on nicotine absorption in human smokers. Food ChemToxico.l 2011; 49(12):3025–30. PMid: 22001171. https://doi.org/10.1016/j.fct.2011.09.037.

Jeong-Im J. Food and Drug Administration Centre for Tobacco Product. 2015. 2020. https://www.fda.gov/ media/124668/download.

Bhisey RA. Chemistry and toxicology of Smokeless Tobacco. Indian J Cancer. 2012; 49(4):364–72. PMid: 23442400. https://doi.org/10.4103/0019-509X.107735.

McAdam K, Enos T, Goss C, Kimpton H, Faizi A, Edwards S, et al. Chem Cent J. 2018; 121:142. http://dx.doi.org/10.1186/s13065-018-0506-2.

Lake BG. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food Chem Toxicol. 1999; 37(4):423–53. https://doi.org/10.1016/S0278-6915(99)00010-1.

EFSA [European Food Safety Authority]. Coumarin in flavourings and other food ingredients with flavouring properties. Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food [AFC]. EFSA J 2008; 793:1–15. 2020. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2008.793.

McAdam K, Vas C, Kimpton H, Faizi A, Liu C, Porter A, et al. Ethyl carbamate in Swedish and American Smokeless Tobacco products and some factors affecting its concentration. Chem Cent J. 2018; 12(1):86. PMid: 30043180 PMCid: PMC6057859. https://doi.org/10.1186/s13065-018-0454-x.

EPA [Environmental Protection Agency]. Initial List of Hazardous Air Pollutants with Modifications. 2017. 2020. https://www.epa.gov/haps/initial-list-hazardous-air-pollutants- modifications#mods.

Dinesh TK, Gourishankar S, Mehta SK. Quantification of ethyl carbamate in tobacco. 2012. 2020. https://www.coresta.org/sites/default/files/abstracts/2012_TSRC15_ Mehta.pdf.

Jiao Z, Dong Y, Chen Q. Ethyl carbamate in fermented beverages: Presence, analytical chemistry, formation mechanism and mitigation proposals. Compr Rev Food Sci F. 2014; 13(4):611–26. PMid: 33412714. https://doi.org/10.1111/1541-4337.12084.

IARC [International Agency for Research on Cancer]. Alcohol consumption and ethyl carbamate. In: IARC monographs on the evaluation of carcinogenic risks to humans. 2010. 2020. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono96.pdf.

FAO, 64th Joint FAO/WHO Expert Committee on Food Additives [JECFA] meeting - Food contaminants. Summary and conclusions, 2005; p. 1–47. 2020. http://www.fao.org/3/a-at877e.pdf.

Benowitz NL. Pharmacology of nicotine: Addiction, smoking- induced disease and therapeutic. Annu Rev Pharmacol Toxicol. 2009; 49:57–71. PMid: 18834313 PMCid: PMC2946180. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742.

Zhang J, Ji H, Sun S, Mao D, Liu H, Guo Y. Selective determination of pyridine alkaloids in tobacco by PFTBA ions/analyte molecule reaction ionization ion trap mass spectrometry. J Am Soc Mass Spectrom. 2007; 18(10):1774–82. PMid: 17716908. https://doi.org/10.1016/j.jasms.2007.07.017.

Severson HH. What have we learned from 20 years of research on Smokeless Tobacco cessation? Am J Med Sci. 2003; 326(4):206–11. PMid: 14557736. https://doi.org/10.1097/00000441-200310000-00011.

Siminszky B, Gavilano L, Bowen SW, Dewey RE. Conversion of nicotine to nornicotine in Nicotianatabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci. 2005; 102:14919–24. PMid: 16192354 PMCid: PMC1253577. https://doi.org/10.1073/pnas.0506581102 .

National Center for Biotechnology Information. PubChem Database. Nicotine, CID=89594, 2020. https://pubchem. ncbi.nlm.nih.gov/compound/Nicotine.

Rai SK, Tewari AK. In synthesis of medicinal agents from plants. Elsevier. 2018; 305–32. PMid: 29291582. https://doi.org/10.1016/B978-0-08-102071-5.00013-1.

Clemens KJ, Caillé S, Stinus L, Cador M. The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol. 2009; 12(10):1355–66. PMid: 19366487. https://doi.org/10.1017/ S1461145709000273.

Bunney PE, Hansen M, LeSage M. Effects of isolated tobacco alkaloids and tobacco products on deprivationinduced food intake and meal patterns in rats. Pharmacol Biochem Behav 2018; 165:45–55. PMid: 29196096 PMCid: PMC5801111. https://doi.org/10.1016/j.pbb.2017.11.004.

Coresta. Technical report. Carbonyls-in-Tobacco-and- Tobacco-Products. 2017. 2020. https://www.coresta. org/sites/default/files/technical_documents/main/TTPA-043-1-CTR_Carbonyls-in-Tobacco-and-Tobacco- Products_Jan2018.

Kaur J, Sharma A, Kumar A, Bhartiya D, Sinha D, Kumari S, et al. SLTChemDB: A database of chemical compounds present in Smokeless Tobacco products. Sci Rep. 2019; 9:7142. PMid: 31073139 PMCid: PMC6509116. https://doi.org/10.1038/s41598-019-43559-y.

National Center for Biotechnology Information. PubChem Database. Formaldehyde, CID=712. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Formaldehyde.

National Center for Biotechnology Information. PubChem Database. Acetaldehyde, CID=177. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Acetaldehyde.

National Center for Biotechnology Information. PubChem Database. Crotonaldehyde, CID=447466. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Crotonaldehyde.

Huang JF, Zhu DM, Ma JF, Zhong M. Acute respiratory distress syndrome due to exposure to high-concentration mixture of ethene and crotonaldehyde. ToxicolInd Health. 2015; 31(7):585–7. PMid: 23448861. https://doi.org/10.1177/0748233713480205.

Chi YN, Zhang X, Cai J, Liu FY, Xing GG, Wan Y. Formaldehyde increases intracellular calcium concentration in primary cultured hippocampal neurons partly through NMDA receptors and T-type calcium channels. Neurosci Bull. 2012; 28(6):715–22. PMid: 23160928 PMCid: PMC5561821. https://doi.org/10.1007/s12264-012-1284-9 .

Rager JE, Smeester L, Jaspers I, Sexton KG, Fry RC. Epigenetic changes induced by air toxics: Formaldehyde exposure alters miRNA expression profiles in human lung cells. Environ Health Perspect. 2011; 119(4):494–500. PMid: 21147603 PMCid: PMC3080931. https://doi.org/10.1289/ehp.1002614.

Yu G, Chen Q, Liu X, Guo C, Du H, Sun Z. Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression.Mol Med Rep. 2014; 10(4):1915–20. PMid: 25109304. https://doi.org/10.3892/mmr.2014.2473.

Klaassen, CD. [ed]. Basic science of poison. Casarett and Doull’s Toxicology, 6th ed. New York, NY, McGraw-Hill, 2001. p. 1005.

Poirier M, Fournier M, Brousseau P, Morin A. Effects of volatile aromatics, aldehydes, and phenols in tobacco smoke on viability and proliferation of mouse lymphocytes. J Toxicol Environ Health A. 2002; 65(19):1437–51. PMid: 12396875. https://doi.org/10.1080/00984100290071342 .

Weng M, Lee H, Park S, Hu Y, Wang H, Chen L, et al. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. PNAS. 2018; 115(27):E6152–E616. PMid: 29915082 PMCid: PMC6142211. https://doi.org/10.1073/ pnas.1804869115.

Kumar A, Bhartiya D, Kaur J, Kumari S, Singh H, Saraf D, Sinha Narain SD, Mehrotra R. Regulation of toxic contents of Smokeless Tobacco products. Indian J Med Res. 2018; 148(1): 14–24. PMid: 30264750 PMCid: PMC6172907. https://doi.org/10.4103/ijmr.IJMR_2025_17.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2007. 2020. https://www.atsdr.cdc.gov/toxprofiles/ tp.asp?id=22&tid=3.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Beryllium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2002. 2020. https://www.atsdr.cdc.gov/phs/phs. asp?id=339&tid=33.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2012. 2020. https://www.atsdr.cdc.gov/toxprofiles/ tp.asp?id=48&tid=15.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2012. 2020. https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=17.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Nickel. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2005. 2020. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=245&tid=44.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2007. 2020. https://www.atsdr.cdc.gov/PHS/PHS. asp?id=92&tid=22.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 1999. 2020. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=115&tid=24.

Agency for Toxic Substances and Disease Registry [ATSDR]. Toxicological profile for Selenium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2003. 2020. https://www.atsdr.cdc.gov/PHS/PHS.asp?id=151&tid=28.

Pappas RS. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics. 2011; 3(11):1181–98. PMid: 21799956 PMCid: PMC4542087. https://doi.org/10.1039/c1mt00066g.

Arain SS, Kazi TG, Afridi HI, Talpur FN, Kazi AG, Brahman KD. Correlation of arsenic levels in Smokeless Tobacco products and biological samples of oral cancer patients and control consumers. Biol Trace Elem Res. 2015; 168(2):287– 95. PMid: 25975948. https://doi.org/10.1007/s12011-015-0355-y.

WHO [World Health Organisation]. Evaluation of certain contaminants in food. 2011. 2020. https://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng. pdf?sequence=1.

National Center for Biotechnology Information. PubChem Database. Arsenic, CID=5359596. 2020. https://pubchem. ncbi.nlm.nih.gov/compound/Arsenic.

Byrd DM, Roegner ML, Griffiths JC, Lamm S, Grumski KS, Wilson R, et al. Carcinogenic risks of inorganic arsenic in perspective. 1996; 68(6):484–94. PMid: 8891790. https://doi.org/10.1007/s004200050098.

Abernathy CO, Thomas DJ, Calderon RL. Health effects and risk assessment of Arsenic. Nutr J. 2003; 133(5):1536S–8S. PMid: 12730460. https://doi.org/10.1093/jn/133.5.1536S.

Lindberg AL, Sohel N, Rahman M, Persson LA, Vahter M. Impact of smoking and chewing tobacco on arsenicinduced skin lesions. Environ Health Perspect. 2010; 118:533–8. PMid: 20064784 PMCid: PMC2854731. https://doi.org/10.1289/ehp.0900728.

National Center for Biotechnology Information. PubChem Database. Beryllium, CID=5460467. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Beryllium.

Bruce MR, Odin M. Concise international chemical assessment Document 32. World Helath Organisation, Geneva. 2001. 2020. https://www.who.int/ipcs/publications/cicad/ en/cicad32.pdf?ua=1.

National Center for Biotechnology Information. PubChem Database. Cadmium, CID=23973. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Cadmium.

García-Rico L, Leyva-Perez J, Jara-Marini ME. Content and daily intake of copper, zinc, lead, cadmium and mercury from dietary supplements in Mexico. Food Chem Toxicol. 2007; 45:1599–605. PMid: 17418927. https://doi.org/10.1016/j.fct.2007.02.027.

Prabhakar V, Jayakrishnan G, Nair SV, Ranganathan B. Determination of trace metals, moisture, pH and assessment of potential toxicity of selected Smokeless Tobacco products. Indian J Pharm Sci. 2013; 75(3):262– 9. PMid: 24082341 PMCid: PMC3783743. https://doi.org/10.4103/0250-474X.117398.

WHO [World Health Organization]. The Scientific Basis of Tobacco Product Regulation: Fourth Report of a WHO Study group. 2013. 2020. https://www.who.int/tobacco/ publications/prod_regulation/trs_967/en/.

Ganguly K, Levanen B, Palmberg L, Akesson A, Linden A. Cadmium in tobacco smokers: A neglected link to lung disease? Eur Respir Rev. 2018; 27(147):pii.170122. PMid: 29592863. https://doi.org/10.1183/16000617.0122-2017.

National Center for Biotechnology Information. PubChem Database. Chromium, CID=23976. https://pubchem.ncbi. nlm.nih.gov/compound/Chromium.

Akhtar A, Afridi HI, Kazi TG. et al. Chromium exposure in the adult population, consuming different types of Smokeless Tobacco products in Pakistan. Biol Trace Elem Res. 2017; 175:312–21. PMid: 27422637. https://doi.org/10.1007/s12011-016-0801-5 .

Sogor C, Gaspar A, Posta J. Flame atomic absorption spectrometric determination of total chromium and Cr(VI) in cigarette ash and smoke using flow injection/hydraulic high-pressure sample introduction. Microchem J. 1998; 8:251–5. https://doi.org/10.1006/mchj.1997.1552.

National Center for Biotechnology Information. PubChem Database. Mercury, CID=23931. 2020. https://pubchem. ncbi.nlm.nih.gov/compound/Mercury.

Dhaware D, Deshpande A, Khandekar RN, Chowgule R. Determination of toxic metals in Indian Smokeless Tobacco products. Scientific World Journal. 2009; 9:1140. PMid: 19838600 PMCid: PMC5823206. https://doi.org/10.1100/tsw.2009.132.

Jarup, L. Hazards of heavy metal contamination. Br Med Bull. 2003; 68: 167–82. PMid: 14757716. https://doi.org/10.1093/bmb/ldg032.

National Center for Biotechnology Information. PubChem Database. Nickel, CID=935. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Nickel.

Linneberg A, Nielsen NH, Menne T, Madsen F, Jorgensen T. Smoking might be a risk factor for contact allergy. J Allergy Clin Immunol. 2003; 111:980–4. PMid: 12743561. https://doi.org/10.106mai.2003.1394.

National Center for Biotechnology Information. PubChem Database. Lead, CID=5352425. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/Lead.

Kauffman JF, Westenberger BJ, Robertson JD, Guthrie J, Jacobs A, Cummins SK. Lead in pharmaceutical products and dietary supplements. Regul Toxicol Pharmacol. 2007; 48:128–34. PMid: 17467129. https://doi.org/10.1016/j.yrtph.2007.03.001.

Mrugesh T, Dipa L, Manishika G. Effect of lead on human erythrocytes: An in vitro study. Acta Pol Pharm. 2011; 66:653–6.

Jhamtani RC, Shukla S, Dahiya MS, Agarwal R. Evaluation of acute effect of lead at sub-lethal concentrations at Zebrafish. Res J Environ Toxicol. 2017; 11:97–103. https://doi.org/10.3923/rjet.2017.97.103.

National Center for Biotechnology Information. PubChem Database. Selenium, CID=6326970. 2020. https://pubchem. ncbi.nlm.nih.gov/compound/Selenium.

Hechc SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998; 11:559. PMid: 9625726. https://doi.org/10.1021/tx980005y .

Stepanov I, Hecht SS, Ramakrishnan S, Gupta, PC. Tobaccospecific nitrosamines in Smokeless Tobacco products marketed in India. Int J Cancer. 2005; 116(1):16–9. PMid: 15756678. https://doi.org/10.1002/ijc.20966.

Pickworth WB. Smokeless Tobacco products: Characteristics, usage, health effects and regulatory implications. Elsevier. 2020.

National Cancer Institute and Centers for Disease Control and Prevention. Smokeless Tobacco and Public Health: A Global Perspective. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. NIH Publication No. 14-7983; 2014. 2020. https://cancercontrol.cancer.gov/brp/tcrb/global-perspective/SmokelessTobaccoAndPublicHealth.pdf.

Cogliano V, Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F. Carcinogenicity of human papillomaviruses. Lancet Oncol. 2004; 5(12:708. https://doi.org/10.1016/ s1470-2045(05)70086-3.

EPA [Environmental Protection Agency]. N-Nitrosomorpholine, 2000. 2020. https://www.epa.gov/ sites/production/files/2016-09/documents/n-nitrosomorpholine. pdf.

HSFS [Hazardous Substance Fact Sheet]. New Jersey Department of health and Senior Services. 2006. 2020. https://nj.gov/health/eoh/rtkweb/documents/fs/1412.pd/f.

National Center for Biotechnology Information. PubChem Database. N-Nitrososarcosine, CID=25811. https://pubchem. ncbi.nlm.nih.gov/compound/N-Nitrososarcosine.

National Center for Biotechnology Information. PubChem Database. N-Nitrosonornicotine, CID=12613538. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/3-_2S_- 1-nitrosopyrrolidin-2-yl_pyridine.

National Center for Biotechnology Information. PubChem Database. N-Nitrosodiethanolamine, CID=14223. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/N-Nitrosodiethanolamine.

National Center for Biotechnology Information. PubChem Database. N-Nitrosomorpholine, CID=6046. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/N-Nitrosomorpholine.

National Center for Biotechnology Information. PubChem Database. N-Nitrosopiperidine, CID=7526. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/N-Nitrosopiperidine.

National Center for Biotechnology Information. PubChem Database. N’-Nitrosoanabasine, CID=14335. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/N_-Nitrosoanabasine.

National Center for Biotechnology Information. PubChem Database. N-Nitrosoanatabine, CID=51291. 2020. https://pubchem.ncbi.nlm.nih.gov/compound/N-Nitrosoanatabine.

Patten CJ, Smith TJ, Friesen MJ, Tynes RE, Yang C S, Murphy SE. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N’-nitrosonornicotine alpha-hydroxylation by human liver microsomes. Carcinogenesis. 1997; 18(8):1623–30. PMid: 9276639. https://doi.org/10.1093/carcin/18.8.1623.

Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobaccospecific nitrosamines. J Nucleic Acids. 2010: 284935. PMid: 20871819 PMCid: PMC2943119. https://doi.org/10.4061/2010/284935.

Sturla SJ, Scott J, Lao Y, Hecht SS, Villalta PW. Mass spectrometric analysis of relative levels of pyridyloxobutylation adducts formed in the reaction of DNA with a chemically activated form of the tobacco-specific carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone. Chem Res Toxicol. 2005; 18(6):1048–55. PMid: 15962940. https://doi.org/10.1021/tx050028u

Wong HL, Murphy SE, Hecht SS. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic nitrosamines: N ‘-Nitrosonornicotine enantiomers, N-Nitrosopiperidine and N-nitrosopyrrolidine. Chem Res Toxicol. 2005; 18(1):61–9. PMid: 15651850. https://doi.org/10.1021/tx0497696 .

Yalcin E, Monte SJ. Tobacco nitrosamines as culprits in disease: Mechanisms reviewed. Physiol Biochem. 2016; 72(1):107–20. PMid: 26767836 PMCid: PMC4868960. https://doi.org/10.1007/s13105-016-0465-9.

Vu AT, Taylor KM, Holman MR, Ding YS, Hearn B, Watson CH. Polycyclic aromatic hydrocarbons in the mainstream smoke of popular U.S. cigarettes. Chem Res Toxicol. 2015; 28(8):1616–26. PMid: 26158771 PMCid: PMC4540633. https://doi.org/10.1021/acs.chemrestox.5b00190 .

Agency for Toxic Substances and Disease Registry [ATSDR] U.S. Department of Health and Human Services, Public Health Service; Atlanta, GA: Toxicological Profile for Polycyclic Aromatic Hydrocarbons [PAHs]. 1995. https://www.atsdr.cdc.gov/PHS/PHS.asp?id=120&tid=25.

Gerde P, Scholander P. A mathematical model of the penetration of polycyclic aromatic hydrocarbons through the bronchial lining layer. Environ Res. 1987; 44(2):321–34. https://doi.org/10.1016/S0013-9351[87]80241-4 .

Harvey RG. Environmental chemistry of PAHs. In PAHs and related compounds. Springer, Berlin, Heidelberg; 1998: 1–54. https://doi.org/10.1007/978-3-540-49697-7_1.

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the evaluation of carcinogenic risks to humans. 2010; 92:1.

Moorthy B, Chu C, Danielle JC. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol Sci. 2015; 145(1):5–15. PMid: 25911656 PMCid: PMC4408964. https://doi.org/10.1093/toxsci/kfv040.

Orisakwe OE, Igweze ZN, Okolo KO, Udowelle NA. Human health hazards of poly aromatic hydrocarbons in Nigerian Smokeless Tobacco. Toxicol Rep. 2015; 2:1019–23. PMid: 28962443 PMCid: PMC5598458. https://doi.org/10.1016/j.toxrep.2015.07.011

Published

2021-12-22

How to Cite

Gupta, S., Jain, N. J., & Jhamtani, R. C. (2021). Chemical Components in Smokeless Tobacco Products and Impact on Health. Toxicology International, 28(4), 279–309. https://doi.org/10.18311/ti/2021/v28i4/26489

Issue

Section

Original Research