Effect of Substrate Temperature on Properties of Copper Oxide Thin Films Coated by Spray Pyrolysis

Jump To References Section

Authors

  • Optoelectronics and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, Kerala, 683102 ,IN
  • International School of Photonics, Cochin University of Science and Technology, Kochi, 682022 ,IN
  • Optoelectronics and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva, Kerala ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/33351

Keywords:

Spray pyrolysis, surface morphology, bandgap energy, Urbach tailing

Abstract

Copper oxide shows a wide range of optical as well as electrical characteristics depending upon the preparation parameters. This wide range turning capability makes it a preferable candidate for effective use in various application fields like optical filters, light energy harvesting, gas sensing and semiconducting device fabrication. Spray pyrolysis technique with manual spray system was used to deposit a thin layer of copper oxide on glass substrates at temperatures of 300oC, 350oC, and 400oC. X-ray diffraction analysis shows that all the thin films obtained have monoclinic phase. A change of grain size from 15 nm to 25 nm was observedas the substrate temperature was varied from 300oC to 400oC.The Hall coefficient analysis confirms p-type conductivity in films obtained at 300oC and 350oC and N type conductivity with high resistivity for film coated at 400oC. Optical band gap increases from 1.75 to 2.17 eV with the increase in substrate temperature due to energy band tailing.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-04-12

How to Cite

Ben Jos, K. J. Saji, & E. I. Anila. (2023). Effect of Substrate Temperature on Properties of Copper Oxide Thin Films Coated by Spray Pyrolysis. Journal of Mines, Metals and Fuels, 71(1), 24–28. https://doi.org/10.18311/jmmf/2023/33351

Issue

Section

Articles

 

References

Abinaya, C., Bethke, K., Andrei, V., Baumann, J., Beatrix Pollakowski-Herrmann, Kanngießer, B., Beckhoff, B., Vásquez, G. C., Mayandi, J., Finstad, T. G., & Rademann, K. (n.d.). The effect of a. postdeposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Advances, 10(49), 29394–29401. https:// doi.org/10.1039/d0ra03906c

Cullity, B. D., Stock, S. R., & Stock, S. (2001): Elements of X-Ray Diffraction (3rd Edition). Prentice Hall.

Dhineshbabu, N. R., Rajendran, V., Nithyavathy, N., and Vetumperumal, R. (2016): Study of structural and optical properties of cupric oxide nanoparticles. Applied Nanoscience, 6(6), 933–939. https://doi.org/ 10.1007/s13204-015-0499-2

Diachenko, O., Kováè, J., Dobrozhan, O., Novák, P., Kováè, J., Skriniarova, J., and Opanasyuk, A. (2021): Structural and Optical Properties of CuO Thin Films Synthesized Using Spray Pyrolysis Method. Coatings, 11(11), 1392. https://doi.org/10.3390/coatings11111392

Godbole, B. and Tiwary, S. (2017): CuO Thin Film Prepared by Chemical Bath Deposition Technique: A Review. International Journal of Nanoscience and Nanotechnology, 8, 11–15.

Hassanien, A. S. and Akl, A. (2016): Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices and Microstructures, 89C, 153–169. https://doi.org/10.1016/ j.spmi.2015.10.044

Huang, L. S., Yang, S. G., Li, T., Gu, B. X., Du, Y. W., Lu, Y. N. and Shi, S. Z. (2004): Preparation of large-scale cupric oxide nanowires by thermal evaporation method. Journal of Crystal Growth, 260(1–2), 130–135.

Jeong, Y. K. and Choi, G. M. (1996): Nonstoichiometry and electrical conduction of CuO. Journal of Physics and Chemistry of Solids, 57(1), 81–84. https://doi.org/ 10.1016/0022-3697(95)00130-1

Khatami, N., Ilegbusi, O. and Trakhtenberg, L. (2015): Mathematical Modeling and Experimental Validation of Mixed Metal Oxide Thin Film Deposition by Spray Pyrolysis. Materials Sciences and Applications, 06. https://doi.org/10.4236/msa.2015.61009

Li, F. M., Waddingham, R., Milne, W. I., Flewitt, A. J., Speakman, S., Dutson, J., Wakeham, S. and Thwaites, M. (2011): Low temperature (<100°C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy. Thin Solid

R. Kondrotas, Juðkënas, R., Naujokaitis, A., Niaura, G., Mockus, Z., Kanapeckaitë, S., Èechavièius, B., Juðkevièius, K., Saucedo, E. and Sánchez, Y. (2015): Investigation of selenization process of electrodeposited Cu–Zn–Sn precursor for Cu2ZnSnSe4 thin-film solar cells. Thin Solid Films, 589, 165–172. https://doi.org/10.1016/j.tsf.2015.05.012

Reichardt, W., Gompf, F. and Wanklyn, B. M. (1990): Lattice dynamics of cupric oxide. Zeitschrift Fr Physik B Condensed Matter, 81(1), 19–24. https://doi.org/ 10.1007/BF01454208

Shinde, V. R., Mahadik, S. B., Gujar, T. P., and Lokhande, C. D. (2006): Supercapacitive cobalt oxide (CO3O4) thin films by spray pyrolysis. Applied Surface Science, 252(20), 7487–7492.

Tauc, J. (1968): Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), 37–46. https://doi.org/10.1016/0025- 5408(68)90023-8

ZareAsl, H., Mohammad Rozati, S., ZareAsl, H., & Mohammad Rozati, S. (2018): Spray Deposited Nanostructured CuO Thin Films: Influence of Substrate Temperature and Annealing Process. Materials Research, 21(2). https://doi.org/10.1590/1980- 5373-mr-2017-0754.