Preclinical Animal Models of Renal Disease

Jump To References Section

Authors

  • Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University Limda, Vadodara - 391760, Gujarat ,IN
  • Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University Limda, Vadodara - 391760, Gujarat ,IN
  • Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University Limda, Vadodara - 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/34635

Keywords:

Acute Renal Failure, Acyclovir, Amikacin, Amphotericin B, Cisplatin

Abstract

Acute Renal Failure (ARF) is a serious condition where the kidneys suddenly stop working, commonly caused by drug-related injury. This article aims to give a detailed explanation of different animal models used to study ARF, focusing on the biomarkers linked with this condition. When administering drugs to animals, it is essential to be mindful of the potential for ARF to occur. Nephrotoxic drugs like cisplatin, methotrexate, acyclovir, Cyclosporine, folic acid, amphotericin B, and amikacin can induce ARF if the dosage and duration of exposure are not adequately regulated to match the clinical scenario. Careful monitoring is crucial to ensuring the safety and well-being of the animals under our care. This article contains various screening models for ARF caused by various allopathic drugs like glycerol, acyclovir, amikacin, amphotericin B, Isoniazid-Rifampicin, cisplatin, folic acid, diclofenac, and lithium. The intrinsic toxicity of these medications also plays a significant role in the ensuing Acute Kidney Injury (AKI), and the kidney is probably more vulnerable to damage than other organs. These medications can be hazardous and their effects on the glomerulus and/or tubules can be caused by oxidative damage, hypersensitivity responses, altered hemodynamics, and tubule blockage. This article aims to provide a thorough description of the model used and to examine the findings in relation to that particular model. This approach can yield valuable insights and help ensure the findings’ accuracy and relevance.

Downloads

Download data is not yet available.

Published

2023-11-03

How to Cite

Bahalkar, K., Musale, M., & Kakadiya, J. (2023). Preclinical Animal Models of Renal Disease. Toxicology International, 30(4), 503–509. https://doi.org/10.18311/ti/2023/v30i4/34635
Received 2023-08-03
Accepted 2023-09-16
Published 2023-11-03

 

References

Korrapati MC, Shaner BE, Schnellmann RG. Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther. 2012; 341(1):126-36. https://doi.org/10.1124/jpet.111.190249 PMid:22228809 PMCid:PMC3310704 DOI: https://doi.org/10.1124/jpet.111.190249

Bellomo R, Ronco C, Kellum JA, Meshta RL, Palevsky P. Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care. 2004; 8(4):1-9. https://doi.org/10.1186/cc2872 PMid:15312219 PMCid:PMC522841 DOI: https://doi.org/10.1186/cc2872

Kulkarni AP, Bhosale SJ. Epidemiology and pathogenesis of acute kidney injury in the critically ill patients. Indian J of Crit Care Med. 2020; 24(3):S84-S9. https://doi. org/10.5005/jp-journals-10071-23394 PMid:32704209 PMCid:PMC7347066 DOI: https://doi.org/10.5005/jp-journals-10071-23394

Singh AP, Muthuraman A, Jaggi AS, Singh N, Grover K, Dhawan R. Animal models of acute renal failure. Pharmacol Rep. 2012; 64(1):31-44. https://doi.org/10.1016/S1734- 1140(12)70728-4 PMid:22580518 DOI: https://doi.org/10.1016/S1734-1140(12)70728-4

Wu J, Pan X, Fu H, Zheng Y, Dai Y, Yin Y, Chen Q, Hao Q, Bao D, Hou D. Effect of curcumin on glycerolinduced acute kidney injury in rats. Sci Rep. 2017; 7(1):10114:1-11. https://doi.org/10.1038/s41598-017-10693-4 PMid:28860665 PMCid:PMC5579036 DOI: https://doi.org/10.1038/s41598-017-10693-4

Li YF, Xu BY, An R, Du XF, Yu K, Sun JH, Zhang GH, Wang W, An LP, Wu GL. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury. BMC Nephrol. 2019; 20:1-14. https://doi.org/10.1186/s12882-019-1394-y PMid:31208365 PMCid:PMC6580578 DOI: https://doi.org/10.1186/s12882-019-1394-y

Adedapo AA, Osaretin ER, Falayi OO, Oyagbemi AA, Ogunpolu BS, Omobowale TO, Oguntibeju OO, Yakubu MA. Ramipril blunts glycerol-induced acute renal failure in rats through its antiapoptosis, anti-inflammatory, antioxidant, and renin-inhibiting properties. J Basic Clin Physiol Pharmacol. 2020; 32(3):225-235. https://doi. org/10.1515/jbcpp-2020-0032 PMid:33155993 DOI: https://doi.org/10.1515/jbcpp-2020-0032

Lu H, Han YJ, Xu JD, Xing WM, Chen J. Proteomic characterization of acyclovirinduced nephrotoxicity in a mouse model. PLoS One. 2014; 9(7):e103185. https:// doi.org/10.1371/journal.pone.0103185 PMid:25055032 PMCid:PMC4108384 DOI: https://doi.org/10.1371/journal.pone.0103185

Adikwu E, Kemelayefa J. Acyclovir-induced nephrotoxicity: The protective benefit of curcumin. Eur J Bio. 2021; 80(1):22-8. https://doi.org/10.26650/EurJBiol.2021.903407 DOI: https://doi.org/10.26650/EurJBiol.2021.903407

Jagdish Kakadiya, Nehal Shah. Diabetes and renal ischemic and reperfusion injury review. Pharmacologyonline. 2010; 2:243-50.

Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019; 20(20):5023. https://doi.org/10.3390/ijms20205023 PMid:31658782 PMCid:PMC6834162 DOI: https://doi.org/10.3390/ijms20205023

El-Agawy MS, Badawy AM, Rabei MR, Elshaer MM, El Nashar EM, Alghamdi MA, Alshehri MA, Elsayed HR. Methotrexate-induced alteration of renal Aquaporins 1 and 2, oxidative stress, and tubular apoptosis can be attenuated by Omega-3 fatty acids supplementation. Int J Mol Sci. 2022; 23(21):12794. https://doi.org/10.3390/ijms232112794 PMid:36361584 PMCid:PMC9653681 DOI: https://doi.org/10.3390/ijms232112794

Sawaya BP, Weihprecht H, Campbell WR, Lorenz JN, Webb RC, Briggs JP, Schnermann J. Direct vasoconstriction as a possible cause for amphotericin B-induced nephrotoxicity in rats. J Clin Invest. 1991; 87(6):2097-107. https://doi.org/10. 1172/JCI115240 PMid:1710234 PMCid:PMC296966 DOI: https://doi.org/10.1172/JCI115240

Tonomura Y, Yamamoto E, Kondo C, Itoh A, Tsuchiya N, Uehara T, Baba T. Amphotericin B-induced nephrotoxicity: Characterization of blood and urinary biochemistry and renal morphology in mice. Hum Exp Toxicol. 2009; 28(5):293-300. https://doi.org/10.1177/0960327109105404 PMid:19661263 DOI: https://doi.org/10.1177/0960327109105404

Kaynar K, Gul S, Ersoz S, Ozdemir F, Ulusoy H, Ulusoy S. Amikacin-induced nephropathy: Is there any protective way? Ren Fail. 2007; 29(1):23-7. https://doi. org/10.1080/08860220601039072 PMid:17365906 DOI: https://doi.org/10.1080/08860220601039072

Tulkens PM. Experimental studies on nephrotoxicity of aminoglycosides at low doses: Mechanisms and perspectives. Am J Med. 1986; 80(6):105-14. https://doi. org/10.1016/0002-9343(86)90487-0 PMid:3728522 DOI: https://doi.org/10.1016/0002-9343(86)90487-0

Chan K, Ledesma KR, Wang W, Tam VH. Characterization of amikacin drug exposure and nephrotoxicity in an animal model. J Antimicrob Agents. 2020; 64(9):10-128. https://doi.org/10.1128/AAC.00859-20 PMid:32571819 PMCid:PMC7449196 DOI: https://doi.org/10.1128/AAC.00859-20

Skrypnyk NI, Harris RC, de Caestecker MP. Ischemiareperfusion model of acute kidney injury and post injury fibrosis in mice. J Vis Exp. 2013; (78):e50495. https://doi. org/10.3791/50495 PMid:23963468 PMCid:PMC3854859 DOI: https://doi.org/10.3791/50495

Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract. 2019; 38(4):427- 40. https://doi.org/10.23876/j.krcp.19.062 PMid:31537053 PMCid:PMC6913588 DOI: https://doi.org/10.23876/j.krcp.19.062

Bhalodia Y, Kanzariya N, Patel R, Patel N, Vaghasiya J, Jivani N, Raval H. Renoprotective activity of benincasa cerifera fruit extract on ischemia/reperfusioninduced renal damage in rat. Iran J Kidney Dis. 2009; 3(2):80-5. https:// doi.org/10.4103/0973-8258.59738 DOI: https://doi.org/10.4103/0973-8258.59738

Kakadiya J, Brambhatt J, Shah N. Renoprotective activity of pioglitazone on ischemia/reperfusion induced renal damage in diabetic rats. Recent Res Sci Technol. 2010; 2(3).92-7.

Kakadiya J, Patel D, Shah N. Effect of hesperidin on renal complication in experimentally induced renal damage in diabetic sprague dawley rats. J ecobiotechnol. 2010; 2(2):45-50.

Kakadiya J, Shah N. Comparison effect of Pioglitazone and Glimepiride alone on renal function marker in experimentally induced renal damage in diabetic rats. J Appl Pharm Sci. 2011; 1:72-6.

Kakadiya J, Shah N. Effect of some synthetic and herbal drugs on tumor necrosis factor alpha in renal reperfusion induced renal damage in type 2 diabetic rats. Int J Preclinical Pharm Res. 2011; 2:30-37.

Morsy MA, Heeba GH. Nebivolol ameliorates cisplatininduced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol. 2016; 118(6):449-55. https://doi.org/10.1111/ bcpt.12538 PMid:26617394 DOI: https://doi.org/10.1111/bcpt.12538

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010; 2(11):2490-518. https://doi.org/10.3390/toxins2112490 PMid:22069563 PMCid:PMC3153174 DOI: https://doi.org/10.3390/toxins2112490

Mitazaki S, Kato N, Suto M, Hiraiwa K, Abe S. Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicol. 2009; 265(3):115121. https://doi.org/10.1016/j.tox.2009.10.005 PMid:19833167 DOI: https://doi.org/10.1016/j.tox.2009.10.005

Prévot A, Semama DS, Justrabo E, Guignard JP, Escousse A, Gouyon JB. Acute cyclosporine A-induced nephrotoxicity: A rabbit model. Pediatr Nephrol. 2000; 14:370- 5.https:// doi.org/10.1007/s004670050777 PMid:10805463 DOI: https://doi.org/10.1007/s004670050777

Shimizu MH, Volpini RA, de Bragança AC, Nascimento MM, Bernardo DR, Seguro AC, Canale D. Administration of a single dose of lithium ameliorates rhabdomyolysis -associated acute kidney injury in rats. PloS one. 2023; 18(2):e0281679. https://doi.org/10.1371/journal. pone.0281679 PMid:36795689 PMCid:PMC9934413 DOI: https://doi.org/10.1371/journal.pone.0281679

Yan LJ. Folic acid-induced animal model of kidney disease. Animal Model Exp Med. 2021; 4:329-42. https://doi.org/10.1002/ame2.12194 PMid:34977484 PMCid:PMC8690981 DOI: https://doi.org/10.1002/ame2.12194

Adikwu E, Ebinyo NC. Isoniazid/rifampicin-induced nephrotoxicity in rats: Protective Potential of selenium. J Integr Nephrol Androl. 2020; 7(2):34-40. https://doi. org/10.4103/jina.jina_11_19 DOI: https://doi.org/10.4103/jina.jina_11_19