A Review on the Impact of Pesticide Toxicity on the Physiological and Behavioral Condition of Fish

Jump To References Section

Authors

  • Department of Fishery Sciences, Vidyasagar University, Midnapore - 721102, West Bengal ,IN
  • Narajole Raj College, Narajole - 721211, West Bengal ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/34317

Keywords:

Fisheries, Fish Health, Insecticides, Pesticides, Toxicity

Abstract

Pesticides are an essential component of contemporary agriculture because they help keep unwanted insects and animals under control and boost crop yields. However, the widespread usage of pesticides has led to worries over the unexpected consequences that these chemicals have on non-target animals and ecosystems, particularly those that are aquatic. Fish, which play an essential role in aquatic food webs, are particularly vulnerable to the damaging effects of pesticides as a result of their direct contact with contaminated water bodies. The review covers acute and chronic pesticide effects on fish, including physiological and behavioral responses. It discusses population-level effects and biodiversity loss on fish reproduction, growth, development, immunological function, and locomotor activity. It also highlights pesticide toxicity’s long-term effects on fish populations. Pesticide exposure may also alter foraging behavior, competitive aptitude, and predation vulnerability, according to the review. Pesticides harm fish health by accumulating toxins, causing genetic defects, and upsetting the aquatic ecology. These effects put biodiversity in jeopardy and upset the food chain’s delicate balance, raising major environmental issues. It emphasizes the need for interdisciplinary research to better understand fish pesticide toxicity and guide environmental regulatory measures. Implementation of Integrated Pest Management (IPM) practices to ensure sustainable pesticide use in the environment. Use of non-chemical strategies such as crop rotation, natural predators, and resistant varieties. limit pesticide application to specific pests, thereby minimizing ecological damage and preserving ecosystem equilibrium. We can improve agriculture-aquatic biodiversity coexistence by supporting holistic pesticide management.

Downloads

Download data is not yet available.

Author Biography

Basudev Mandal, Narajole Raj College, Narajole - 721211, West Bengal

 

 

Published

2023-11-03

How to Cite

Mandal, S., & Mandal, B. (2023). A Review on the Impact of Pesticide Toxicity on the Physiological and Behavioral Condition of Fish. Toxicology International, 30(4), 429–439. https://doi.org/10.18311/ti/2023/v30i4/34317
Received 2023-07-04
Accepted 2023-07-30
Published 2023-11-03

 

References

Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AM, Gonçalves F, et al. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: Commercial formulation versus active ingredient. Ecotoxicology. 2009; 18(4):455-63. PMID 19205879. https://doi.org/10.1007/ s10646-009-0300-y DOI: https://doi.org/10.1007/s10646-009-0300-y

Abhilash PC, Singh N. Pesticide use and application: An Indian scenario. J Hazard Mater. 2009; 165(1-3):1-12. PMID 19081675. https://doi.org/10.1016/j.jhazmat.2008.10.061 DOI: https://doi.org/10.1016/j.jhazmat.2008.10.061

Aktar MW, Paramasivam M, Sengupta D, Purkait S, Ganguly M, Banerjee S. Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environ Monit Assess. 2009; 157(1-4):97-104. PMID 18758975. https://doi.org/10.1007/s10661-008-0518-9 DOI: https://doi.org/10.1007/s10661-008-0518-9

Fenik J, Tankiewicz M, Biziuk M. Properties and determination of pesticides in fruits and vegetables. TrAC Trends Anal Chem. 2011; 30(6):814-26. https://doi. org/10.1016/j.trac.2011.02.008 DOI: https://doi.org/10.1016/j.trac.2011.02.008

Strassemeyer J, Daehmlow D, Dominic AR, Lorenz S, Golla B. SYNOPS-WEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot. 2017; 97:28-44. https://doi.org/10.1016/j. cropro.2016.11.036 DOI: https://doi.org/10.1016/j.cropro.2016.11.036

Bernardes MFF, Pazin M, Pereira LC, Dorta DJ. Impact of pesticides on environmental and human health. In: Toxicology studies-cells, drugs and environment. London, UK: IntechOpen. 2015; 195-233. https://doi. org/10.5772/59710 DOI: https://doi.org/10.5772/59710

Boliko MC. FAO and the situation of food security and nutrition in the world. J Nutr Sci Vitaminol (Tokyo). 2019; 65:S4-8. PMID 31619643. https://doi.org/10.3177/jnsv.65. S4 DOI: https://doi.org/10.3177/jnsv.65.S4

Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017; 6(2):48-60. https://doi.org/10.1002/ fes3.108 DOI: https://doi.org/10.1002/fes3.108

Buchel KH. Chemistry of pesticides. New York: John Wiley and Sons, Inc; 1983.

Garg PK, Chishi N, Kumar R, Latha TK, Rai S, Banerjee BD, et al. Organochlorine pesticide tissue levels in benign and malignant breast disease: A comparative exploratory study. J Environ Pathol Toxicol Oncol. 2021; 40(1):43-50. PMID 33639072. https://doi.org/10.1615/ JEnvironPatholToxicolOncol.2020035783 DOI: https://doi.org/10.1615/JEnvironPatholToxicolOncol.2020035783

Hernández AF, Gil F, Lacasaña M, Rodríguez-Barranco M, Tsatsakis AM, Requena M, et al. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem Toxicol. 2013; 61:144-51. PMID 23688862. https://doi. org/10.1016/j.fct.2013.05.012 DOI: https://doi.org/10.1016/j.fct.2013.05.012

Xie P, Zhuge Y, Dai M. Impacts of eutrophication on biodiversity of plankton community. Acta Hydrobiol Sin. 1996; 20:30-7.

Morel FMM, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 1998; 29(1):543-66. https://doi.org/10.1146/annurev. ecolsys.29.1.543 DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.543

Abedi Z, Hasantabar F, Khalesi MK, Babaei S. Enzymatic activities in common carp; Cyprinus carpio influenced by sublethal concentrations of cadmium, lead, chromium. World J Fish Mar Sci. 2013; 5(2):144-51.

Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health. 2016; 4:148. PMID 27486573. https://doi.org/10.3389/ fpubh.2016.00148 DOI: https://doi.org/10.3389/fpubh.2016.00148

Rani S, Ahmed MK, Xiongzhi X, Keliang C, Islam MS, Habibullah-Al-Mamun M. Occurrence, spatial distribution and ecological risk assessment of trace elements in surface sediments of rivers and coastal areas of the East Coast of Bangladesh, North-East Bay of Bengal. Sci Total Environ. 2021; 801:149782. PMID 34467902. https://doi. org/10.1016/j.scitotenv.2021.149782 DOI: https://doi.org/10.1016/j.scitotenv.2021.149782

Beketov MA, Kefford BJ, Schäfer RB, Liess M. Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA. 2013; 110(27):11039-43. PMID 23776226. https://doi.org/10.1073/pnas.1305618110 DOI: https://doi.org/10.1073/pnas.1305618110

Ullah S, Akmal M, Aziz F, Ullah S, Khan KJ. Hand pumps’ water quality analysis for drinking and irrigation purposes in the district. Khyber Pakhtunkhwa Pakistan. European. Academic research Lower, editor. 2014b;2(1):1560-71.

Kosygin L, Dharmendra H, Gyaneshwari R. Pollution status and conservation strategies of Moirang River, Manipur with a note on its aquatic bio-resources. J Environ Biol. 2007; 28(3):669-73. PMID 18380093.

Sarkar SK, Bhattacharya BD, Bhattacharya A, Chatterjee M, Alam A, Satpathy KK, et al. Occurrence, distribution and possible sources of organochlorine pesticide residues in the tropical coastal environment of India: A overview. Environ Int. 2008; 34(7):1062-71. PMID 18423595. https:// doi.org/10.1016/j.envint.2008.02.010. DOI: https://doi.org/10.1016/j.envint.2008.02.010

Murthy KS, Kiran BR, Venkateshwarlu M. A review on toxicity of pesticides in Fish. Int J Open Sci Res. 2013; 1(1):15-36.

Boatman ND, Brickle NW, Hart JD, Milsom TP, Morris AJ, Murray AWA, et al. Evidence for the indirect effects of pesticides on farmland birds. Ibis. 2004; 146:131-43. https://doi.org/10.1111/j.1474-919X.2004.00347.x DOI: https://doi.org/10.1111/j.1474-919X.2004.00347.x

Stephenson GR, Solomon KR. Pesticides and the environment. Guelph, Ontario, Canada: Canadian Network of Toxicology Centres Press; 2007.

Lehtinen K-J, Notini M, Mattsson J, Landner L. Disappearance of bladder wrack (Fucus vesiculosis L.) in the Baltic Sea; Relation to pulp-mill chlorate. Ambio. 1988; 17:387-93.

Rao AS, Pillala RR. The concentration of pesticides in sediments from Kolleru lake in India. Pest Manag Sci. 2001; 57(7):620-4. PMID 11464794. https://doi.org/10.1002/ ps.336 DOI: https://doi.org/10.1002/ps.336

Scott GR, Sloman KA. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat Toxicol. 2004; 68(4):369-92. PMID 15177953. https://doi. org/10.1016/j.aquatox.2004.03.016

Krian A, Jha AK. Acute toxicity and behavioural responses of herbicide (Herboclin) to the fish Clarias batrachus (Linn). Indian J Environ Ecoplan. 2009; 16(1):185-8

Joshi PK, Pandey AK, Nagar RK. Eletrophoretic variation in the blood protein fractions in Malathion treated fish Channa punctatus (Bloch). Proceedings of the Nat Symp Anim Meta Pol L; 1988. p. 147-9.

Far MS, Roodsari HV, Zamini A, Mirrasooli E, Kazemi R. The effects of diazinon on behavior and some hematological parameters of fry rainbow trout (Oncorhynchus mykiss). World J Fish Mar Sci. 2012; 4(4):369-75.

Ullah R, Zuberi A, Tariq M, Ullah S. Acute toxic effects of cypermethrin on hematology and morphology of liver, brain and gills of mahseer (Tor putitora). Int J Agric Biol. 2014.

Anees MA. Intestinal pathology in a freshwater teleost, Channa punctatus (Bloch) exposed to sublethal and chronic levels of three organophosphorus insecticides. Acta Physiol Lattinoam. 1976; 26(1):63-7.

Rani S, Venkataramana GV. Effects of the organophosphorous Malathion on the branchial gills of a freshwater fish Glossogobius giuris (Ham). Int J Sci N Atl. 2012; 3(2): 324-30.

Deka S, Mahanta R. A study on the effect of organophosphorus pesticide Malathion on hepatorenal and reproductive organs of Heteropneustes fossilis (Bloch). Sci Probe. 2012; 1(1):1-13.

Helma C, Mersch-Sundermann V, Houk VS, Glasbrenner U, Klein C, Wenquing L, et al. Comparative evaluations of four bacterial assays for the detection of genotoxic effects in the dissolved water phases of aqueous matrices. Environ Sci Technol. 1996; 30(3):897-907. https://doi.org/10.1021/ es950355w DOI: https://doi.org/10.1021/es950355w

Gartiser S, Stiene G, Hartmann A, Zipperle J. Einsatz von Desinfektionsmitteln im Krankenhausbereich Ursache fur okotoxische and gentoxische Effekte im Krankakenhausabwasser? (German). Wasser. 2001; 96:71-88.

Vargas VM, Migliavacca SB, de Melo AC, Horn RC, Guidobono RR, de Sá Ferreira IC, et al. Genotoxicity assessments in aquatic environments under the influence of heavy metals and organic contaminants. Mutat Res. 2001; 490(2):141-58. PMID 11342240. https://doi.org/10.1016/ S1383-5718(00)00159-5 DOI: https://doi.org/10.1016/S1383-5718(00)00159-5

Dunier M, Siwicki AK. Effects of pesticides and other organic pollutants in the aquatic environment on immunity of fish: A review. Fish Shellfish Immunol. 1993; 3(6):423-38. https://doi.org/10.1006/fsim.1993.1042 DOI: https://doi.org/10.1006/fsim.1993.1042

Hoeger B, Hitzfeld B, Köllner B, Dietrich DR, van den Heuvel MR. Sex and low-level sampling stress modify the impacts of sewage effluent on the rainbow trout (Oncorhynchus myckiss) immune system. Aquat Toxicol. 2005; 73(1):79-90. PMID 15892994. https://doi. org/10.1016/j.aquatox.2005.03.004 DOI: https://doi.org/10.1016/j.aquatox.2005.03.004

Maskaoui K, Zhou JL, Zheng TL, Hong H, Yu Z. Organochlorine micropollutants in the Jiulong River Estuary and Western Xiamen Sea, China. Mar Pollut Bull. 2005; 51(8-12):950-9. PMID 16291197. https://doi. org/10.1016/j.marpolbul.2004.11.018 DOI: https://doi.org/10.1016/j.marpolbul.2004.11.018

Murthy KS, Kiran BR, Venkateshwarlu M. A review on toxicity of pesticides in Fish. Int J Open Sci Res. 2013; 1(1):15-36

Palanisamy S, Bhaskaran P. Selected biochemical and physiological response of the fish Channa striatus as biomonitor to assess heavy metal pollution in freshwater environment. J Ecotoxicol Environ Monit. 1995; 5(2):131-8.

Thenmozhi C, Vignesh V, Thirumurugan R, Arun S. Impacts of Malathion on mortality and biochemical changes of freshwater fish Labeo rohita. Iran J Environ Health Sci Eng. 2011; 8(4):387-94.

Bose S, Nath S, Sahana SS. Toxic impact of thiamethoxam on the growth performance and liver protein concentration of a freshwater fish Oreochromis niloticus (TREWAVAS); Ind J Fundament [app]. Life Sci 1. 2011; 4:274-80.

Muthukumaravel K, Sivakumar B, Kumarasamy P, Govindarajan M. Studies on the toxicity of pesticide monocrotophos on the biochemical constituents of the freshwater fish Labeo rohita. Int J Curr Biochem Biotechnol. 2013; 2(10):20-6.

Roger PA, Bhuiyan SI. Ricefield ecosystem management and its impact on disease vectors. Int J Water Resour Dev. 1990; 6(1):2-18. https://doi.org/10.1080/07900629008722446 DOI: https://doi.org/10.1080/07900629008722446

Joshi UM, Desai AK. Effects of sublethal concentration of monocrotophos on acid and alkaline phosphatase activities in the tissues of freshwater fish tilapia mossambica. J Anim Morphol Physiol. 1981; 28:221-8.

Milaeva ER. The role of radical reactions in organomercurials impact on lipid peroxidation. J Inorg Biochem. 2006; 100(5- 6):905-15. PMID 16624415. https://doi.org/10.1016/j. jinorgbio.2006.02.014 DOI: https://doi.org/10.1016/j.jinorgbio.2006.02.014

Filipak Neto F, Zanata SM, Silva de Assis HC, Nakao LS, Randi MAF, Oliveira Ribeiro CA. Toxic effects of DDT and methyl mercury on the hepatocytes from Hoplias malabaricus. Toxicol Vitro. 2008; 22(7):1705-13. https:// doi.org/10.1016/j.tiv.2008.07.006 DOI: https://doi.org/10.1016/j.tiv.2008.07.006

Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK. Toxicity of the herbicide atrazine: Effects on lipid peroxidation and activities of Antioxidant Enzymes in the fresh water fish Channa punctatus (Block). Int J Environ Res Public Health. 2010; 7(8):3298-312. PMID 20948961. https://doi.org/10.3390/ijerph7083298 DOI: https://doi.org/10.3390/ijerph7083298

Minier C, Levy F, Rabel D, Bocquené G, Godefroy D, Burgeot T, et al. Flounder health status in the Seine bay. A multi markers study. Mar Environ Res. 2000; 50(1- 5):373-7. PMID 11460721. https://doi.org/10.1016/ S0141-1136(00)00059-3 DOI: https://doi.org/10.1016/S0141-1136(00)00059-3

Marigoudar SR, Ahmed RN, David M. Cypermethrin induced respiratory and behavioural responses in Labeo rohita. Vet Arh. 2009; 79(6):583-90.

Singh SK, Singh SK, Yadav RP. Toxicological and biochemical alterations of cypermethrin (synthetic pyrethroids) against freshwater teleost fish Colisa fasciatus at different season. World J Zool. 2010; 5(1):25-32.

Marigoudar SR, Ahmed RN, David M. Cypermethrin induced: in vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Toxicol Environ Chem. 2010; 91(6):1175-82. https://doi. org/10.1080/02772240802577282 DOI: https://doi.org/10.1080/02772240802577282

Scott GR, Sloman KA. The effect of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat Toxicol. 2004; 68(4):369-92. PMID 15177953. https://doi.org/10.1016/j. aquatox.2004.03.016 DOI: https://doi.org/10.1016/j.aquatox.2004.03.016

Rani GI, Kumaraguru AK. Behavioural responses and acute toxicity of Clarias batrachus to synthetic pyrethroid insecticide, ƛ-cyhalothrin. J Environ App Biores. 2014; 2(1):19-24

Mishra A, Meshram L, Chubey K. Study of lethal effects of pesticides (trichlorfon) on fish Heteropneustis fossilis. J Ind Pollut Control. 2014; 30(2).

Sabra FS, Mehana ES. Pesticides toxicity in fish with particular reference to insecticides. Asian J Agric Food Sci. 2015; 3(1).

Murthy KS, Kiran BR, Venkateshwarlu M. A review on toxicity of pesticides in Fish. Int J Open Sci Res. 2013; 1(1):15-36.

Campbell HA, Handy RD, Sims DW. Shifts in a fish’s resource holding power during a contact paired interaction: The influence of a copper-contaminated diet in rainbow trout. Physiol Biochem Zool. 2005; 78(5):706-14. PMID 16047292. https://doi.org/10.1086/432146 DOI: https://doi.org/10.1086/432146

Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013; 11(3):315- 35. PMID 24179466. https://doi.org/10.2174/15701 59X11311030006. DOI: https://doi.org/10.2174/1570159X11311030006

Kumar R, Kumari R, Mishra BK. Behavioural and morphological changes induced in the freshwater fish, Clarias batrachus exposed to chlorpyrifos 50%+ cypermethrin 5% EC.

Nagaraju B, Sudhakar P, Anitha A, Haribabu G, Rathnamma VV. Toxicity evaluation and behavioural studies of fresh water fish Labeo rohita exposed to Rimon. Int J Res Pharm Biomed Sci. 2011; 2(2):722-7.

Satyavardhan K. A Comparative Toxicity Evaluation and behavioral observations of fresh water fishes to fenvalerate. Middle East J Sci Res. 2013; 13(2):133-6.

Sulekha BT, Mercy TVA. Pesticide-induced histopathological Changes in the Freshwater Fishes of Kuttanand, Kerala-A Tool to Assess Water Quality and the Health Status of Fishes. Asian Fish Sci. 2009; 22(2):729-49. https://doi.org/10.33997/j.afs.2009.22.2.033 DOI: https://doi.org/10.33997/j.afs.2009.22.2.033

Ram RN, Singh SK. Carbofuran-induced histopathological and biochemical changes in liver of the teleost fish, Channa punctatus (Bloch). Ecotoxicol Environ Saf. 1988; 16(3):194-201. PMID 3229378. https://doi. org/10.1016/0147-6513(88)90050-4 DOI: https://doi.org/10.1016/0147-6513(88)90050-4

Mohan RM. Malathion induced changes in the ovary of freshwater fish, Glossogobins giuris (Ham.). Pol Res. 2000; 19(1):73-5.

Rezania S, Park J, Md Din MF, Mat Taib S, Talaiekhozani A, Kumar Yadav K, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies. Mar Pollut Bull. 2018; 133:191-208. PMID 30041307. https://doi.org/10.1016/j.marpolbul.2018.05.022 DOI: https://doi.org/10.1016/j.marpolbul.2018.05.022

Pimpão CT, Zampronio AR, Silva de Assis HC. Effects of deltamethrin on hematological parameters and enzymatic activity in Ancistrus multispinis (Pisces, Teleostei). Pestic Biochem Physiol. 2007; 88(2):122-7. https://doi. org/10.1016/j.pestbp.2006.10.002 DOI: https://doi.org/10.1016/j.pestbp.2006.10.002

Rios FS, Kalinin AL, Rantin FT. The effects of long-term food deprivation on respiration and haematology of the Neotropical fish Hoplias malabaricus. J Fish Biol. 2002; 61(1):85-95. https://doi.org/10.1111/j.1095-8649.2002. tb01738.x DOI: https://doi.org/10.1111/j.1095-8649.2002.tb01738.x

Hrubec TC, Smith SA, Robertson JL. Age related differences in haematologic and plasma chemistry analytes of hybrid striped bass Morore chrysops x Morore saxatilis. Vet Clin Pathol. 2008; 30:8-15. https://doi.org/10.1111/j.1939- 165X.2001.tb00249.x DOI: https://doi.org/10.1111/j.1939-165X.2001.tb00249.x

Babu Velmurugan EI, Senthilkumaar P, Uysal E, Satar A. Hematological parameters of freshwater fish Anabas testudineus after sublethal exposure to cypermethrin. Environ Pollut Prot. 2016; 1:32-9. https://doi.org/10.22606/ epp.2016.11004 DOI: https://doi.org/10.22606/epp.2016.11004

Ghaffar A, Hussain R, Khan A, Abbas RZ. Hematobiochemical and genetic damage caused by triazophos in fresh water fish, Labeo rohita. Int J Agric Biol. 2015; 17(3):637-42. https://doi.org/10.17957/IJAB/17.3.14.1016 DOI: https://doi.org/10.17957/IJAB/17.3.14.1016

Satyanarayan S, Bejankiwar RS, Chaudhari PR, Kotangale JP, Satyanarayan A. Impact of some chlorinated pesticides on the haematology of the fish Cyprinus carpio and Puntius ticto. J Environ Sci (China). 2004; 16(4):631-4. PMID 15495970

Begum G. Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish Clarias batrachus (linn) and recovery response. Aquat Toxicol. 2004; 66(1):83-92. PMID 14687981. https://doi.org/10.1016/j. aquatox.2003.08.002 DOI: https://doi.org/10.1016/j.aquatox.2003.08.002

Marins AT, Severo ES, Cerezer C, Leitemperger JW, Müller TE, Floriano L, et al. Environmentally relevant pesticides induce biochemical changes in Nile tilapia (Oreochromis niloticus). Ecotoxicology. 2021; 30(4):585-98. PMID 33770304. https://doi.org/10.1007/s10646-021-02368-8 DOI: https://doi.org/10.1007/s10646-021-02368-8

Ullah R, Zuberi A, Ullah S, Ullah I, Ullah Dawar FU. Cypermethrin induced behavioral and biochemical changes in mahseer, Tor putitora. J Toxicol Sci. 2014; 39(6):829-36. PMID 25374374. https://doi.org/10.2131/jts.39.829 DOI: https://doi.org/10.2131/jts.39.829

Marigoudar SR, Ahmed RN, David M. Ultrastructural responses and oxidate stress induced by cypermethrin in liver of Labeo rohita. Chem E. coli First. 2012; 1-13. https:// doi.org/10.1080/02757540.2012.748754

Ambreen F, Javed M. Pesticide mixture induced DNA damage in peripheral blood erythrocytes of freshwater fish, Oreochromis niloticus. Pak J Zool. 2018; 50(1):339-46. https://doi.org/10.17582/journal.pjz/2018.50.1.339.346 DOI: https://doi.org/10.17582/journal.pjz/2018.50.1.339.346

Gilot-Delhalle J, Colizzi A, Moutschen J, Moutschen- Dahmen M. Mutagenicity of some organophosphorus compounds at the ade6 locus of Schizosaccharomyces pombe. Mutat Res. 1983; 117(1-2):139-48. PMID 6835257. https://doi.org/10.1016/0165-1218(83)90161-1 DOI: https://doi.org/10.1016/0165-1218(83)90161-1

Mirsalis JC, Tyson CK, Steinmetz KL, Loh EK, Hamilton CM, Bakke JP, et al. Measurement of unscheduled DNA synthesis and S phase synthesis in rodent hepatocytes following in vivo treatment: Testing of 24 compounds. Environ Mol Mutagen. 1989; 14(3):155-64. PMID 2792091. https://doi.org/10.1002/em.2850140305 DOI: https://doi.org/10.1002/em.2850140305

Vinggaard AM, Hnida C, Breinholt V, Larsen JC. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol In vitro. 2000; 14(3):227-34. PMID 10806373. https://doi.org/10.1016/S0887-2333(00)00018-7 DOI: https://doi.org/10.1016/S0887-2333(00)00018-7

Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jørgensen EC. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol. 2002; 179(1):1-12. PMID 11884232. https://doi. org/10.1006/taap.2001.9347 DOI: https://doi.org/10.1006/taap.2001.9347

Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect. 2004; 112(5):524-31. PMID 15064155. https://doi.org/10.1289/ ehp.6649 DOI: https://doi.org/10.1289/ehp.6649

Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006; 79(12):1160-9. PMID 16626760. https://doi.org/10.1016/j. lfs.2006.03.023 DOI: https://doi.org/10.1016/j.lfs.2006.03.023

Salazar-Arredondo E, de Jesús Solís-Heredia M, Rojas- Garcıa E, Hernández-Ochoa I, Quintanilla-Vega B. Sperm chromatin alteration and DNA damage by methylparathion; chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod Toxicol. 2008; 25(4):455-60. PMID 18595656. https://doi.org/10.1016/j. reprotox.2008.05.055 DOI: https://doi.org/10.1016/j.reprotox.2008.05.055

Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: Structural diversity of ligands. Toxicol Sci. 2000; 54(1):138-53. PMID 10746941. https://doi.org/10.1093/toxsci/54.1.138 DOI: https://doi.org/10.1093/toxsci/54.1.138

Kim HJ, Park YI, Dong MS. Effects of 2,4-D and DCP on the DHT-induced androgenic action in human prostate cancer cells. Toxicol Sci. 2005; 88(1):52-9. PMID 16107550. https://doi.org/10.1093/toxsci/kfi287 DOI: https://doi.org/10.1093/toxsci/kfi287

Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LE. Environmental hormone disruptors, evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994; 126(2):276-85. PMID 8209380. https://doi.org/10.1006/taap.1994.1117 DOI: https://doi.org/10.1006/taap.1994.1117

Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrinedisrupting properties in fish. Mol Cell Endocrinol. 2020; 507:110764. PMID 32112812. https://doi.org/10.1016/j. mce.2020.110764 DOI: https://doi.org/10.1016/j.mce.2020.110764

Senthilkumaran B. Pesticide-and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo– hypophyseal–gonadal system during gametogenesis in teleosts- A review. Gen Comp Endocrinol. 2015; 219:136-42. PMID 25637674. https://doi.org/10.1016/j.ygcen.2015.01.010 DOI: https://doi.org/10.1016/j.ygcen.2015.01.010

Biswas C, Maity S, Adhikari M, Chatterjee A, Guchhait R, Pramanick K. Pharmaceuticals in the aquatic environment and their endocrine disruptive effects in fish. In Proceedings of the Zoological Society. Springer India; 2021. p. 1-16. https://doi.org/10.1007/s12595-021-00402-5 DOI: https://doi.org/10.1007/s12595-021-00402-5