Effect of Lead Toxicity on Wild Cannabis Species of Punjab Region

Jump To References Section

Authors

  • School of Bioengineering and Biosciences, Lovely Professional University, Phagwara - 144411, Punjab ,IN
  • School of Bioengineering and Biosciences, Lovely Professional University, Phagwara - 144411, Punjab ,IN
  • School of Bioengineering and Biosciences, Lovely Professional University, Phagwara - 144411, Punjab ,IN
  • School of Bioengineering and Biosciences, Lovely Professional University, Phagwara - 144411, Punjab ,IN
  • School of Bioengineering and Biosciences, Lovely Professional University, Phagwara - 144411, Punjab ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i4/31022

Keywords:

Contamination, Cannabis sativa, Heavy Metals, Phytoremediation, Toxicity
Toxicology

Abstract

Human activities are causing environmental pollution in many ways by contaminating air, water and soil by adding different types of pollutants. Among various pollutants, heavy metals are an emerging threat in today’s world which are degrading our environment in a number of ways. Lead is the most widespread and evenly distributed poisonous element. Due to urbanization and growing human activities, lead emissions in different forms have increased, resulting in the contamination of soil and water. The lead transfers from environment to different forms of life, disrupting biological processes and causing various health issues. In this article, pot culture experiments were carried out to analyse the stress of Lead (Pb) and the capability of Cannabis sp. to tolerate the stress by studying the impact of different concentrations (0 mg/kg, 50 mg/kg, 100 mg/kg and 150 mg/kg of soil) on various biochemical aspects of the plant (Photosynthetic pigments, protein, antioxidant enzyme activity). Lead was given in the form of lead acetate. The results showed that the photosynthetic pigments-chlorophyll and carotenoid decreased with increasing lead concentration. Same effect was shown by the protein content in the leaves. On the other hand, Superoxide Dismutase (SOD), which is an antioxidant enzyme, increased with increasing concentration of lead.

Downloads

Download data is not yet available.

Published

2023-11-03

How to Cite

Balgotra, D., Bashir, S., Vadhel, A., Girdhar, M., & Mohan, A. (2023). Effect of Lead Toxicity on Wild Cannabis Species of Punjab Region. Toxicology International, 30(4), 469–474. https://doi.org/10.18311/ti/2023/v30i4/31022
Received 2022-08-23
Accepted 2023-08-07
Published 2023-11-03

 

References

Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 2011; 213:113–36. https://doi. org/10.1007/978-1-4419-9860-6_4 DOI: https://doi.org/10.1007/978-1-4419-9860-6_4

Kaur N, Girdhar M, Mohan A. Toxic effects of hexavalent chromium on physiological and biochemical parameters of Cyperus iria (rice flatsedge) - A weed plant. Plant Cell Biotechnol Mol Biol. 2020; 20(3–4):67–73.

Girdhar. Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. 3 Biotech. 2014; 4(6):579–89. https://doi.org/10.1007/ s13205-014-0194-0 DOI: https://doi.org/10.1007/s13205-014-0194-0

Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R. Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol. 2008; 196:73–93. https://doi.org/10.1007/978-0-387- 78444-1_3 DOI: https://doi.org/10.1007/978-0-387-78444-1_3

Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. Lead toxicity in plants: Impacts and remediation. J Environ Manage. 2019; 250. https://doi. org/10.1016/j.jenvman.2019.109557 DOI: https://doi.org/10.1016/j.jenvman.2019.109557

Pinto AP, Mota AM, De Varennes A, Pinto FC. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ. 2004; 326(1– 3):239–47. https://doi.org/10.1016/j.scitotenv.2004.01.004 DOI: https://doi.org/10.1016/j.scitotenv.2004.01.004

Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001; 212(4):475–86. https://doi. org/10.1007/s004250000458 DOI: https://doi.org/10.1007/s004250000458

Maestri E, Marmiroli M, Visioli G, Marmiroli N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ Exp Bot. 2010; 68(1):1–13. https://doi.org/10.1016/j. envexpbot.2009.10.011 DOI: https://doi.org/10.1016/j.envexpbot.2009.10.011

Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C. Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut [Internet]. 2009; 157(4):1178– 85. https://doi.org/10.1016/j.envpol.2008.09.053 DOI: https://doi.org/10.1016/j.envpol.2008.09.053

Natasha, Shahid M, Khalid S, Saleem M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ Geochem Health. 2022; 44(2):487–96. https://doi.org/10.1007/s10653-021-00818-0 DOI: https://doi.org/10.1007/s10653-021-00818-0

Sharma, Dubey. Lead toxicity im plants. Brazilian J plant Physiol. 2005; 17:35–52. https://doi.org/10.1590/S1677- 04202005000100004 DOI: https://doi.org/10.1590/S1677-04202005000100004

Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Woźny A. Pectinous cell wall thickenings formation- A response of moss protonemata cells to lead. Environ Exp Bot. 2009; 65(1):119–31. https:// doi.org/10.1016/j.envexpbot.2008.05.006 DOI: https://doi.org/10.1016/j.envexpbot.2008.05.006

Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, et al. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater. 2009; 172(1):479–84. https://doi.org/10.1016/j.jhazmat.2009.06.141. DOI: https://doi.org/10.1016/j.jhazmat.2009.06.141

Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater. 2010; 177(1–3):437–44. https://doi.org/10.1016/j. jhazmat.2009.12.052 DOI: https://doi.org/10.1016/j.jhazmat.2009.12.052

Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014; 147:147–51. https://doi.org/10.1016/j. foodchem.2013.09.116 DOI: https://doi.org/10.1016/j.foodchem.2013.09.116

McPartland JM. Cannabis systematics at the levels of Family, Genus, and Species. Cannabis Cannabinoid Res. 2018; 3(1):203–12. https://doi.org/10.1089/can.2018.0039 DOI: https://doi.org/10.1089/can.2018.0039

Hillig KW. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol. 2005; 52(2):161– 80. https://doi.org/10.1007/s10722-003-4452-y DOI: https://doi.org/10.1007/s10722-003-4452-y

McPartland JM, Hegman W, Long T. Cannabis in Asia: Its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Veg Hist Archaeobot. 2019; 28(6):691–702. https://doi.org/10.1007/ s00334-019-00731-8 DOI: https://doi.org/10.1007/s00334-019-00731-8

Zhang Q, Chen X, Guo H, Trindade LM, Salentijn EMJ, Guo R, et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci. 2018; 871:1–13. https://doi.org/10.3389/fpls.2018.01876 DOI: https://doi.org/10.3389/fpls.2018.01876

Pamplona FA, Takahashi RN. Psychopharmacology of the endocannabinoids: Far beyond anandamide. J Psychopharmacol. 2012; 26(1):7–22. https://doi. org/10.1177/0269881111405357 DOI: https://doi.org/10.1177/0269881111405357

Girdhar M, Singh S, Rasool H, Srivastava V, Mohan A. Evaluating different weeds for phytoremediation potential available in tannery polluted area by conducting pot and hydroponic experiments. Curr World Environ J. 2014; 9(1):156–67. https://doi.org/10.12944/CWE.9.1.22 DOI: https://doi.org/10.12944/CWE.9.1.22

Yokel J, Delistraty DA. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environ Toxicol. 2003; 18(2):104– 14. https://doi.org/10.1002/tox.10106 DOI: https://doi.org/10.1002/tox.10106

Gottesfeld P, Were FH, Adogame L, Gharbi S, San D, Nota MM, et al. Soil contamination from lead battery manufacturing and recycling in seven African countries. Environ Res. 2018; 609–14. https://doi.org/10.1016/j. envres.2017.11.055 DOI: https://doi.org/10.1016/j.envres.2017.11.055

Päivöke AEA. Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot. 2002; 48(1):61–73. https://doi.org/10.1016/S0098- 8472(02)00011-4 DOI: https://doi.org/10.1016/S0098-8472(02)00011-4

Navabpour S, Yamchi A, Bagherikia S, Kafi H. Leadinduced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2020; 26(4):793–802. https://doi.org/10.1007/s12298-020- 00777-3 DOI: https://doi.org/10.1007/s12298-020-00777-3

Faiz S, Yasin NA, Khan WU, Shah AA, Akram W, Ahmad A, et al. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: Modulation in polyamines and antioxidant enzymes. Int J Phytoremediation. 2022; 24(4):364–72. https://doi.org/10.1 080/15226514.2021.1949263 DOI: https://doi.org/10.1080/15226514.2021.1949263

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949; 24(1):1–15. https://doi.org/10.1104/pp.24.1.1 DOI: https://doi.org/10.1104/pp.24.1.1

Maclachlan S, Zalik S. Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot. 1963; 41(7):1053– 62. https://doi.org/10.1139/b63-088 DOI: https://doi.org/10.1139/b63-088

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–75. https://doi.org/10.1016/S0021-9258 (19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Dhindsa RS, Plumb-dhindsa P, Thorpe TA. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 1981; 32(1):93–101. https://doi.org/10.1093/jxb/32.1.93 DOI: https://doi.org/10.1093/jxb/32.1.93

Xiong. Lead toxicity in Brassica pekinensis Rupr.: Effect on nitrate assimilation and growth Zhi-Ting. Environ Toxicol. 2006; 165. https://doi.org/10.1002/tox.20167 DOI: https://doi.org/10.1002/tox.20167

Hu JZ, Shi GX, Xu QS, Wang X, Yuan QH, Du KH. Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physiol. 2007; 54(3):414–9. https://doi.org/10.1134/ S1021443707030181 DOI: https://doi.org/10.1134/S1021443707030181

Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and nonaccumulating ecotypes of Sedum alfredii. J Integr Plant Biol. 2008; 50(2):129–40. https://doi.org/10.1111/j.1744- 7909.2007.00608.x DOI: https://doi.org/10.1111/j.1744-7909.2007.00608.x

Piotrowska A, Bajguz A, Godlewska-Zyłkiewicz B, Czerpak R, Kamińska M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot. 2009; 66(3):507–13. https://doi.org/10.1016/j. envexpbot.2009.03.019 DOI: https://doi.org/10.1016/j.envexpbot.2009.03.019

Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol. 2010; 101(9):3025–32. https:// doi.org/10.1016/j.biortech.2009.12.031 DOI: https://doi.org/10.1016/j.biortech.2009.12.031

Cenkci S, Ciǧerci IH, Yildiz M, Özay C, Bozdaǧ A, Terzi H. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot. 2010; 67(3):467–73. https://doi.org/10.1016/j. envexpbot.2009.10.001 DOI: https://doi.org/10.1016/j.envexpbot.2009.10.001

Kovalchuk I, Titov V, Hohn B, Kovalchuk O. Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res - Fundam Mol Mech Mutagen. 2005; 570(2):149–61. https://doi. org/10.1016/j.mrfmmm.2004.10.004 DOI: https://doi.org/10.1016/j.mrfmmm.2004.10.004

Gopal R, Rizvi AH. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere. 2008; 70(9):1539–44. https://doi. org/10.1016/j.chemosphere.2007.08.043 DOI: https://doi.org/10.1016/j.chemosphere.2007.08.043

Malar S, Shivendra Vikram S, JC Favas P, Perumal V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 2016; 55(1):1–11. https://doi. org/10.1186/s40529-014-0054-6 DOI: https://doi.org/10.1186/s40529-014-0054-6

Usman K, Abu-Dieyeh MH, Zouari N, Al-Ghouti MA. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci Rep. 2020; 10(1):1–10. https://doi. org/10.1038/s41598-020-73621-z DOI: https://doi.org/10.1038/s41598-020-73621-z