Numerical Study of Nonlinear Convective Heat Transfer Flow of Metal Oxide Nanoparticle TiO2-Enhanced Fluid between Two Concentric Cylinders with Aggregation of Nanoparticles

Jump To References Section

Authors

  • Department of Mathematics, M. S. Ramaiah Institute of Technology (Affiliated to VTU), Bengaluru- 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology (Affiliated to VTU), Bengaluru- 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology (Affiliated to VTU), Bengaluru- 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology (Affiliated to VTU), Bengaluru- 560054, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35874

Keywords:

Convective Boundary Condition, Metal Oxide Nanoparticle, Nanoparticle Aggregation, Reynold’s Model Viscosity

Abstract

The utilization of nanofluid is one of the most used techniques for improving heat transfer in applications like heat exchangers, heat storage systems, mining and nuclear power plants. Because of high thermal conditions, the density relation of the working fluids may not be linear, therefore, an analysis is conducted on the quadratic convection of nanofluid flow in a porous annulus region considering an inclination. The phenomenon of temperature-dependent viscosity on the flow, kinematics of nanoparticle aggregation, and heat transport phenomenon with Exponential Space-Related Heat Source (ESHS) and a Temperature-Related Heat Source (THS) are considered. The governing equations are solved numerically. The influence of key parameters is analyzed using 2D and 3D graphs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

N. Srikantha, B. N. Veena, M. Uma, & S. Sushma. (2023). Numerical Study of Nonlinear Convective Heat Transfer Flow of Metal Oxide Nanoparticle TiO<sub>2</sub>-Enhanced Fluid between Two Concentric Cylinders with Aggregation of Nanoparticles. Journal of Mines, Metals and Fuels, 71(10), 1579–1587. https://doi.org/10.18311/jmmf/2023/35874

 

References

Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab (ANL), Argonne, IL (United States). 1995;

Chen H, Ding Y, He Y, Tan C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett. 2007 Aug; 444(4–6):333–7. DOI: https://doi.org/10.1016/j.cplett.2007.07.046

Wolthers W, Duits MHG, van den Ende D, Mellema J. Shear history dependence of the viscosity of aggregated colloidal dispersions. J Rheol (N Y N Y). 1996 Sep; 40(5):799–811. DOI: https://doi.org/10.1122/1.550783

Rashidi MM, Abelman S, Freidooni Mehr N. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013 Jul; 62:515–25. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004

Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences. 2013 Sep; 71:111–7. DOI: https://doi.org/10.1016/j.ijthermalsci.2013.04.013

Shah Z, Ullah A, Bonyah E, Ayaz M, Islam S, Khan I. Hall effect on Titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface. AIP Adv. 2019 May; 9(5):055113. DOI: https://doi.org/10.1063/1.5099435

Mahanthesh B, Srikantha N, Mackolil J. A study on heat transfer in three-dimensional nonlinear convective boundary layer flow of nanomaterial considering the aggregation of nanoparticles. Heat Transfer. 2022; 51(1). DOI: https://doi.org/10.1002/htj.22334

Bourne DE, Elliston DG. Heat transfer through the axially symmetric boundary layer on a moving circular fibre. Int J Heat Mass Transf. 1970 Mar; 13(3):583–93. DOI: https://doi.org/10.1016/0017-9310(70)90153-5

Karnis J, Pechoc V. The thermal laminar boundary layer on a continuous cylinder. Int J Heat Mass Transf. 1978 Jan; 21(1):43–7. DOI: https://doi.org/10.1016/0017-9310(78)90154-0

Chamkha AJ. Heat and mass transfer from MHD flow over a moving permeable cylinder with heat generation or absorption and chemical reaction. Communications in Numerical Analysis. 2011; 2011:1–20. DOI: https://doi.org/10.5899/2011/cna-00109

Shahzadi I, Nadeem S. Inclined magnetic field analysis for metallic nanoparticles submerged in blood with convective boundary condition. J Mol Liq. 2017 Mar; 230:61–73. DOI: https://doi.org/10.1016/j.molliq.2017.01.008

Oni MO. Combined effect of heat source, porosity and thermal radiation on mixed convection flow in a vertical annulus: An exact solution. Engineering Science and Technology, an International Journal. 2017 Apr; 20(2):518–27. DOI: https://doi.org/10.1016/j.jestch.2016.12.009

Thriveni K, Mahanthesh B. Sensitivity computation of nonlinear convective heat transfer in hybrid nanomaterial between two concentric cylinders with irregular heat sources. International Communications in Heat and Mass Transfer. 2021 Dec; 129:105677. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105677

Goren SL. On free convection in water at 4°C. Chem Eng Sci. 1966 Jun; 21(6–7):515–8. DOI: https://doi.org/10.1016/0009-2509(66)85065-0

Vajravelu K, Sastri KS. Fully developed laminar free convection flow between two parallel vertical walls—I. Int J Heat Mass Transf. 1977 Jun; 20(6):655–60. DOI: https://doi.org/10.1016/0017-9310(77)90052-7

Mahanthesh B. Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow. In: Mathematical Fluid Mechanics. De Gruyter; 2021. p. 13–54. DOI: https://doi.org/10.1515/9783110696080-002

Dandapat BS, Santra B, Vajravelu K. The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet. Int J Heat Mass Transf. 2007 Mar; 50(5–6):991–6. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.007

Megahed AM, Reddy MG, Abbas W. Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux. Math Comput Simul. 2021 Jul; 185:583–93. DOI: https://doi.org/10.1016/j.matcom.2021.01.011

Kuznetsov AV, Nield DA. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model. Int J Heat Mass Transf. 2013 Oct; 65:682–5. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054

Rana P, Srikantha N, Muhammad T, Gupta G. Computational study of three-dimensional flow and heat transfer of 25 nm Cu–H2O nanoliquid with convective thermal condition and radiative heat flux using modified Buongiorno model. Case Studies in Thermal Engineering. 2021; 27. DOI: https://doi.org/10.1016/j.csite.2021.101340

Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme. Ann Phys. 1936; 417(7):645–72. DOI: https://doi.org/10.1002/andp.19364170706