Analysis of Thermal Performance of Various Battery Packs and Materials Used in Electric Vehicles: A Review

Jump To References Section

Authors

  • Department of Mechanical Engineering, UIT RGPV Bhopal - 462033, Madhya Pradesh ,IN
  • Department of Mechanical Engineering, UIT RGPV Bhopal - 462033, Madhya Pradesh ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35868

Keywords:

Battery, Battery Management, Battery Material, Battery Pack, Electric Vehicles, Thermal

Abstract

Electric powered vehicle popularity gives us better option for reducing the hydrocarbon emissions for the clean environment and will help to minimizing the troposphere of ozone degradation. Evs that are powered by batteries are becoming more commonplace worldwide. A strong Battery Management System (BMS) is essential for the reliable and safe operation of batteries, which have been widely used in many large power applications, including EVs and hybrid EVs. Their optimal plan and the management are significant for safe and beneficial tasks. This review paper examined with about the oldest kind of battery-latest powered battery (Pb-acid battery) and the most recent innovation of battery, lithium-ion battery. The present paper deals about the recent improvement in three important areas like Battery pack shape, different battery material and thermal behaviour which covered main challenges for EVs operation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

Shrivastava, P., & A.C. Tiwari. (2023). Analysis of Thermal Performance of Various Battery Packs and Materials Used in Electric Vehicles: A Review. Journal of Mines, Metals and Fuels, 71(10), 1706–1714. https://doi.org/10.18311/jmmf/2023/35868

 

References

Doucette RT, McCulloch MD. Modeling the Possibilities of Module Mixture Electric Vehicles to Diminish CO2 Discharges. Appl Energy. 2011; 88(7):2315-23. https:// doi.org/10.1016/j.apenergy.2011.01.045 DOI: https://doi.org/10.1016/j.apenergy.2011.01.045

Kempton W. Vehicle-to-Framework Power Execution: From Balancing Out the Network to Supporting Enormous Scope Environmentally Friendly Power. J Power Sources. 2005; 144(1):280-94. https://doi. org/10.1016/j.jpowsour.2004.12.022 DOI: https://doi.org/10.1016/j.jpowsour.2004.12.022

Daina N, Sivakumar A, Polak JW. Modeling Electric Vehicles Use: An Overview on the Strategies. Renew Support Energy Rev. 2017; 68:447-60. https://doi. org/10.1016/j.rser.2016.10.005 DOI: https://doi.org/10.1016/j.rser.2016.10.005

Koyanagi F, Uriu Y. Modeling Power Utilization by Electric Vehicles and Its Effect on Power Interest. Electr Eng Jpn. 1997; 120(4):40-7. https://doi.org/10.1002/(SICI)1520- 6416(199709)120:4<40::AID-EEJ6>3.0.CO;2-P DOI: https://doi.org/10.1002/(SICI)1520-6416(199709)120:4<40::AID-EEJ6>3.0.CO;2-P

Axsen J, Kurani KS. Anticipating Module Half Breed Vehicle Energy Influences in California: Developing Buyer Informed Re-energize Profiles. Transp Res D. 2010; 15(4):212-9. https://doi.org/10.1016/j.trd.2010.02.004 DOI: https://doi.org/10.1016/j.trd.2010.02.004

Sundström OC. Restricting, Charging Administration Components for an Electric Vehicle Charging Specialist Organization. In Proceedings of the Power and Energy Society General Meeting; IEEE 2011; 2011:1-6. https:// doi.org/10.1109/PES.2011.6038982 DOI: https://doi.org/10.1109/PES.2011.6038982

Galus MD, Vayá MG, Krause T, Andersson G. The Job of Electric Vehicles in Brilliant Frameworks. Wiley Interdiscip. Fire Up. Energy Environ. 2013; 2(4):384- 400. https://doi.org/10.1002/wene.56 DOI: https://doi.org/10.1002/wene.56

Brady J, O’Mahony M. Modeling Charging Profiles of Electric Vehicles in Light of Genuine Electric Vehicle Charging Information. Sustain. Urban areas. Società. 2016; 26:203-16. https://doi.org/10.1016/j. scs.2016.06.014 DOI: https://doi.org/10.1016/j.scs.2016.06.014

Morrissey P, Weldon P, Mahony MO. Future Norm and Quick Charging Infrastructure Arranging: An Examination of Electric Vehicle Charging Conduct. Energy Policy. 2016; 89:257-70. https://doi.org/10.1016/j. enpol.2015.12.001 DOI: https://doi.org/10.1016/j.enpol.2015.12.001

Hai Y, Finn T, Ryan M. Driving Example ID for EV Range Assessment. In Proceedings of the IEEE International Electric Vehicle Conference (IEVC). 2012; pp 1-7.

John GH, de Oliveira RPR, Sean V, Michael GE. Simplified Electric Vehicle Power Train Models and Reach Assessment. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), 2011. pp 1-5.

Salah F, Ilg JP, Flath CM, Basse H, Van Dinther Cv. Impact of Electric Vehicles on Dissemination Substations: A Swiss Contextual Investigation. Appl. Energy. 2015; 137:88-96. https://doi.org/10.1016/j.apenergy.2014.09.091 DOI: https://doi.org/10.1016/j.apenergy.2014.09.091

Rao Z, Huo Y, Liu X, Zhang G. Experimental Investigation of Battery Thermal Management System for Electric Vehicle Based on Paraffin/Copper Foam. J Energy Inst. 2015; 88(3):241-6. https://doi.org/10.1016/j. joei.2014.09.006

Hartmann N, Özdemir ED. Impact of Various Use Situations of Electric Vehicles on the German Framework in 2030. J Power Sources. 2011; 196(4):2311-8. https:// doi.org/10.1016/j.jpowsour.2010.09.117 DOI: https://doi.org/10.1016/j.jpowsour.2010.09.117

Liu K, Li K, Peng Q, Zhang C. A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles. Front Mech Eng. 2019; 14(1):47-64. https://doi.org/10.1007/s11465-018-0516-8 DOI: https://doi.org/10.1007/s11465-018-0516-8

Yang F, Sun Y, Shen T. Nonlinear Force Assessment for Vehicular Electrical Mama Chines and Its Application in Motor Speed Control. In Proceedings of the 2007 IEEE International Conference on Control Applications. IEEE. 2007; pp. 1382-7. https://doi.org/10.1109/ CCA.2007.4389429 PMid:17694858 DOI: https://doi.org/10.1109/CCA.2007.4389429

Li G, Hikiri K. Regenerative slowing down force assessment and control approaches for a half breed electric truck, in: Proceedings of the. Yu T, Shen Am. Control. Conference; IEEE Publications. 2010; X:5832-7.

X. Yu, T. Shen, Li G, Hikiri K. Model-based drive shaft force assessment and control of a crossover electric vehicle in energy recovery mode, in: Proceedings of the 2009. ICCAS-SICE; IEEE Publications. pp. 3543-8.

Yin D, Hori Y. An Original Foothold Control of EV in Light of Greatest Viable Force Assessment. In Proceedings of the. I.E.E.E. Vehicle Power and Propulsion Conference. IEEE Publications. 2008; 2008:1-6.

Yin D, Gracious S, Hori Y. An Original Footing Control for EV in View of Greatest Trans-Missible Force Assessment. In Proceedings of the IEEE Transactions on Industrial Electron. 2009.

Yin D, Hori Y. Another Way to Deal with Foothold Control of EV in Light of Greatest Compelling Force Assessment. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, IEEE. 2008; pp. 2764-9.

Lu L, Han X, Li J, Hua J, Ouyang M. A Survey on the Central Points of Contention for Lithium-Particle Battery the Executives in Electric Vehicles. J Power Sources. 2013; 226:272-88. https://doi.org/10.1016/j. jpowsour.2012.10.060 DOI: https://doi.org/10.1016/j.jpowsour.2012.10.060

Goel S, Sharma R, Rathore AK. A review on barrier and challenges of electric vehicle in India and vehicle to grid optimization. Elsevier. https://doi.org/10.1016/j. treng.2021.100057 DOI: https://doi.org/10.1016/j.treng.2021.100057

Sureshb, HPC, Ashokkumard R, Meenakumarib R. Modeling and performance analysis of electric vehicle by B. Sharmilaa, K. Srinivasana, D. Devasenaa, M, Kishor Kumar sadasivunie and Ronakkumar Rajnikant Shah. International Journal of Ambient Energy. May 2021. https://doi.org/10.1080/01430750.2021.1932587 DOI: https://doi.org/10.1080/01430750.2021.1932587

Katoch SS, Eswaramoorthy M. A Detailed Review on Electric Vehicles Battery Thermal Management System. I.O.P. Conf. S. Mater. Sci. Eng. 2020; 912:042005. https:// doi.org/10.1088/1757-899X/912/4/042005 DOI: https://doi.org/10.1088/1757-899X/912/4/042005

Ma J, Chen Q, Gong Z. Algorithmic and Simulated Based Structural Optimization of Air-Cooling Heat Dissipation Structure for EV Battery Pack. I.O.P. Conf S Mater Sci Eng. 2020; 782:032080. https://doi.org/10.1088/1757- 899X/782/3/032080 DOI: https://doi.org/10.1088/1757-899X/782/3/032080

Saqli K, Bouchareb H, Naamane A, Oudghiri M. Battery Pack Thermal Modeling, Simulation and electric model Identification. 2nd International Conference on Electronics Engineering and Renewable Energy; Saidia, Morocco, April 202. https://doi.org/10.1109/ IRSEC53969.2021.9741175

KadlagSunildattaSomnatha, Gupata MK. Review Paper on Electric Vehicle Charging and Battery Management System. International Conference on Communication and Information Processing (ICCIP-2019). DOI: https://doi.org/10.2139/ssrn.3416669

Rao Z, Huo Y, Liu X, Zhang G. Experimental Investigation of Battery Thermal Management System for Electric Vehicle Based on Paraffin/Copper Foam. J Energy Inst. 2015; 88(3):241-6. https://doi.org/10.1016/j. joei.2014.09.006 DOI: https://doi.org/10.1016/j.joei.2014.09.006

Mohammadi F, Nazri GA, Saif M. Modeling, Simulation, and Analysis of Hybrid Electric Vehicle Using MATLAB/Simulink. Proceedings of the 5th International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET) 26; Turkey, 27 (August).

Zhang LW, Yu YS. Simulation of thermal characteristics of lithium batteries for electric vehicles. I.O.P. Conf S Mater Sci Eng. 2019; 657:012036. https://doi. org/10.1088/1757-899X/657/1/012036 32. Uzair M, Abbas G, Hosain S. Characteristics of battery management system of electric vehicles with consideration of the active and passive cell balancing process. World Electr Veh J. 2021; 12:120. https://doi. org/10.3390/wevj12030120 DOI: https://doi.org/10.1088/1757-899X/657/1/012036

Raharjo J, Wikarta A, Sidharta I, Yuniarto MN, Rusli MR. Thermal analysis simulation of parallel cell in modular battery pack for electric vehicle application. J Phys Conf S. 2020; 1517(1):012023. https://doi.org/10.1088/1742- 6596/1517/1/012023 DOI: https://doi.org/10.1088/1742-6596/1517/1/012023

Kang D, Lee P-Y, Yoo K, Kim J. Internal Thermal Network Model-Based Inner Temperature Distribution of HighPower Lithium-Ion Battery Packs with Different Shapes for Thermal Management. J Energy Storage. 2020; 27:101017 https://doi.org/10.1016/j.est.2019.101017 DOI: https://doi.org/10.1016/j.est.2019.101017

Deng J, Bae C, Miller T, L’Eplattenier P, BateauMeyer S. Accelerate Battery Safety Simulations Using Composite Tshell Elements. J Electrochem Soc. 2018; 165(13):A3067-76. https://doi.org/10.1149/2.0521813jes DOI: https://doi.org/10.1149/2.0521813jes

Barai A, Hosseinzadeh E, Guo Y, McGordon A. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management by Thomas Grandjean, James Marco; Elsevier. https:// doi.org/10.1016/j.jpowsour.2017.05.016

Leon EM, Miller SA. An applied analysis of the recyclability of electric vehicle battery packs. Elsevier. https://doi. org/10.1016/j.resconrec.2019.104593

Wang Q-K, Shen J-N, He Y-J, Ma Z-F. Design and management of lithium-ion batteries: a perspective from modeling, simulation and optimization. https://doi. org/10.1088/1674-1056/ab90f8

Arora S, Kapoor A. Experimental Study of Heat Generation Rate during Discharge of LiFePO4 Pouch Cells of Different Nominal Capacities and Thickness by Shashank Arora, and Ajay Kapoor. Batteries 2019. Batteries. 2019; 5(4):70. https://doi.org/10.3390/batteries5040070 DOI: https://doi.org/10.3390/batteries5040070

Sidorov KM, Grishchenko AG. An Experimental Investigation of Electrical and Thermal Performance of Battery Pack for Zero Emission Vehicle by K M Sidorov, A G Grishchenko. I.O.P. Conf S Earth Environ Sci. 2019; 272:022172. https://doi.org/10.1088/1755- 1315/272/2/022172 DOI: https://doi.org/10.1088/1755-1315/272/2/022172