Structural, Electronic and Magnetic Properties of Silicene Functionalized with 4d TM Atoms

Jump To References Section

Authors

  • Department of Physics, M. S. Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35796

Keywords:

Band Gap, Silicene, 4d Transition Metal Atoms

Abstract

The experimental realization of silicene has ignited a great deal of interest in researching its properties for utilization in device applications. Silicene is composed of a lattice of silicon. As a result, it can be integrated with contemporary circuitry structures, which are predominantly silicon-based. Therefore, investigating its characteristics, especially those of the bandgap, is pivotal. In the present work, the density functional theory approach is employed to examine the structural, electronic and magnetic characteristics of free-standing silicene doped with 4d Transition Metal (TM) atoms. Modelling is done for a 4x4 silicene supercell with a single vacancy. The resulting structure is, thus, doped with 4d transition metal atoms. Doping results in lattice distortion, as evidenced by the variance in Si-TM bond length relative to Si-Si bond length. The shortest bond length is noticed in the instance of Ru doping, thus demonstrating its strongest bonding with Si atoms. Doping causes the structure to become increasingly deformed, as proved by the elevation in buckling height as well. Except for Zr, Ru and Pd, which exhibit semiconductor behaviour, the 4d TM doping in silicene results in metallic characteristics as the bands cross the Fermi level in the majority of the configurations discussed here. A narrow band gap with a range of 2.1 to 252 meV is produced by doping silicene with Zr, Ru, and Pd. Magnetism is demonstrated by Nb, Mo, Tc, and Rh-doped structures, whereas the other structures are nonmagnetic. The presence of magnetism in these structures is primarily due to contributions from Si-3p, TM- 4d/5s orbitals, and their hybridization.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

Aggarwal, S., & Anand, M. (2023). Structural, Electronic and Magnetic Properties of Silicene Functionalized with 4d TM Atoms. Journal of Mines, Metals and Fuels, 71(10), 1424–1430. https://doi.org/10.18311/jmmf/2023/35796

 

References

Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Lay GL. Silicene: compelling experimental evidence for graphene-like twodimensional silicon. Phys Rev Lett. 2012; 108(1):155501. https://doi.org/10.1103/PhysRevLett.108.155501 PMid:22587265 DOI: https://doi.org/10.1103/PhysRevLett.108.155501

Chen L, Liu CC, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K. Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon. Phys Rev Lett. 2012; 109:056804. https://doi.org/10.1103/ PhysRevLett.109.056804 PMid:23006197 DOI: https://doi.org/10.1103/PhysRevLett.109.056804

Dávila ME, Marele A, De Padova P, Montero, I, Hennies, F, Pietzsch, A, Shariati, MN, Gómez-Rodríguez, JM, Le Lay, G. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110). Nanotechnology. 2012; 23:385703. https://doi.org/10.1088/0957- 4484/23/38/385703 PMid:22947695 DOI: https://doi.org/10.1088/0957-4484/23/38/385703

Gao N, Zheng WT, Jiang Q. Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys Chem Chem Phys. 2012; 14:257-61. https://doi.org/10.1039/C1CP22719J PMid:22083171 DOI: https://doi.org/10.1039/C1CP22719J

Gao J, Zhang J, Liu, H, Zhang Q, Zhao J. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale. 2013; 5:9785. https://doi. org/10.1039/c3nr02826g PMid:23963524 DOI: https://doi.org/10.1039/c3nr02826g

Tsai WF, Huang CY, Chang TR, Lin H, Jeng HT, Bansil A. Gated silicene as a tunable source of nearly 100% spinpolarized electrons. Nat Commun. 2013; 4:1500. https:// doi.org/10.1038/ncomms2525 PMid:23422668 DOI: https://doi.org/10.1038/ncomms2525

Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J. Tunable bandgap in silicene and germanene. Nano Lett. 2013; 2:113-8. https://doi.org/10.1021/nl203065e PMid:22050667 DOI: https://doi.org/10.1021/nl203065e

Gheshlagh ZHT, Beheshtian J, Mansouri S. The electronic and optical properties of 3d transition metals doped silicene sheet. A DFT study. Mater Res Express. 2019; 6:126326. https://doi.org/10.1088/2053-1591/ab6541 DOI: https://doi.org/10.1088/2053-1591/ab6541

Youngbin L, Kyung-Han Y, Sung Beom C, Yong-Chae C. Electronic Properties of Transition-Metal-Decorated Silicene. Chem Phys Chem. 2014; 15(18):4095-9. https:// doi.org/10.1002/cphc.201402613 PMid:25303061 DOI: https://doi.org/10.1002/cphc.201402613

Kalwar BA, Fangzong W, Saeed MH, Bhutto AA, Tunio MA, Bhagat KJ. Geometric, spintronic, and optoelectronic properties of 3d transition metals doped silicene: An ab initio study. Chin Chem Soc. 2022; 69:1706-18. https://doi.org/10.1002/jccs.202200234 DOI: https://doi.org/10.1002/jccs.202200234

Wang D, Gao H, Xiang Y, Jiang L. Tuninng the structural and electronic properties of single-layer stanene through doping 4d transition metals (Mo, Nb, Rh and Ru): A DFT study. Synthetic Metals. 2020; 264:116399. https:// doi.org/10.1016/j.synthmet.2020.116399 DOI: https://doi.org/10.1016/j.synthmet.2020.116399

Soler JM, Artacho E, Gale JD, Gracia A, Junquera J, Ordejon P, Sánchez-Portal D. The Siesta method for ab initio order-N materials simulation. J Phys:Condens Matter. 2002; 14(11):2745-79. https://doi. org/10.1088/0953-8984/14/11/302 DOI: https://doi.org/10.1088/0953-8984/14/11/302

Behera H, Mukhopadhyay G. Structural and Electronic Properties of Graphene and Silicene: An FP‐(L) APW+ lo Study. AIP Conf Proc. 2010; 1313:152-5. https://doi. org/10.1063/1.3530474 DOI: https://doi.org/10.1063/1.3530474

Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett. 2009; 102:236804. https://doi.org/10.1103/PhysRevLett.102.236804 PMid:19658958 DOI: https://doi.org/10.1103/PhysRevLett.102.236804

Houssa M, Pourtois G, Afanas’ev VV, Stesmans A. Can silicon behave like graphene? A first-principles study. Appl Phys Lett. 2010; 97:112106. https://doi. org/10.1063/1.3489937 DOI: https://doi.org/10.1063/1.3489937

Lebégue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B. 2009; 79:115409. https://doi.org/10.1103/PhysRevB.79.115409 DOI: https://doi.org/10.1103/PhysRevB.79.115409

Şahin H, Cahangirov S, Topsakal M, Bekaroglu E Akturk E Senger RT, Ciraci S. Honeycomb structures of group-IV elements and III-V binary compounds: Firstprinciples calculations. Phys Rev B. 2009; 80:155453. https://doi.org/10.1103/PhysRevB.80.155453 DOI: https://doi.org/10.1103/PhysRevB.80.155453

Wang S. Studies of Physical and Chemical Properties of Two-Dimensional Hexagonal Crystals by FirstPrinciples Calculation. J Phys Soc of Jpn. 2010; 79:064602. https://doi.org/10.1143/JPSJ.79.064602 DOI: https://doi.org/10.1143/JPSJ.79.064602

Slater JC. Atomic radii in crystals. J Chem Phys. 1964; 41:3199-204. https://doi.org/10.1063/1.1725697 DOI: https://doi.org/10.1063/1.1725697