Incorporating Copper and Carbon Nanotube Nanoparticles into Phase Change Materials for Enhanced Thermal Management in Batteries

Jump To References Section

Authors

  • Advanced Technology Research Centre, Presidency University, Bangalore – 560064, Karnataka ,IN
  • Department of Mechanical Engineering, Presidency University, Bangalore – 560064, Karnataka ,IN
  • Department of Electronics and Communication Engineering, Presidency University, Bangalore – 560064 ,IN
  • Department of Mechanical Engineering, Presidency University, Bangalore – 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35045

Keywords:

Battery Thermal Management, Carbon Nanotubes, Copper, Fins, Li-ion Battery, Nano enhanced PCM (NePCM)

Abstract

The primary objective of this study was to explore the impact of integrating nano-additives on heat transfer enhancement within an LHTES (Latent Heat Thermal Energy Storage) system. Our findings revealed that introducing a minimal amount of nano-materials (less than 5.0 vol%) into the Phase Change Material (PCM) led to a remarkable alignment between experimental correlations and mixture models. Furthermore, employing the mixing model allowed for the accurate prediction of outcomes. In the current context of scientific research, there is a strong endorsement for the widespread adoption of Electric Vehicles (EVs) as a sustainable alternative to Internal Combustion Engines (ICEs), crucial for advancing decarbonization and mitigating climate-related crises. Lithium-ion batteries are the predominant choice for EVs and various electrical devices. However, the operational challenges posed by high temperatures, impacting their lifespan, charge/discharge cycles, and the risk of thermal runaway, necessitate effective thermal management systems. Given this background, our study focuses on simulating the heat dissipation of a single cylindrical Li-ion battery cell employing a Nano-enhanced Phase Change Material (NePCM)-based cooling system. We also introduce a novel fin design in this work. Through comprehensive analysis, we examine the performance of battery modules utilizing PCM and NePCM at different discharge rates, both with and without the newly proposed fin design. Our research demonstrates that the incorporation of fins and nanoparticles into PCM significantly enhances heat transfer and reduces the charging time compared to the base PCM. Notably, carbon-based nanoparticles outshine their metal-based counterparts in terms of melting rate and maintaining a uniform temperature profile within the battery.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

Dandotiya, D., Joshi, A. K., Kakati, P., & J. Sudharshan. (2023). Incorporating Copper and Carbon Nanotube Nanoparticles into Phase Change Materials for Enhanced Thermal Management in Batteries. Journal of Mines, Metals and Fuels, 71(10), 1799–1808. https://doi.org/10.18311/jmmf/2023/35045

 

References

Global Energy Review 2019. Glob Energy Rev 2019. 2020

Hannan MA, Hoque MM, Hussain A, Yusof Y, Ker PJ. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access. 2018; 6:19362-78. https://doi.org/10.1109/ ACCESS.2018.2817655 DOI: https://doi.org/10.1109/ACCESS.2018.2817655

Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Sci Eng. 2015; 3(5):385-418. https://doi. org/10.1002/ese3.95 DOI: https://doi.org/10.1002/ese3.95

Panasonic Batteries I. Lithium Ion Batteries Technical Handbook Japanese/International English. Matsushita Batter Ind Co, Ltd [Internet]. 2007; June. Available from: https://actec.dk/media/wysiwyg/Actec/PDF/Li-Ion_ handbook.pdf

Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018; 10(December 2016):246-67. https://doi.org/10.1016/j. ensm.2017.05.013 DOI: https://doi.org/10.1016/j.ensm.2017.05.013

Gou J, Liu W, Luo Y. The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study. Appl Therm Eng [Internet]. 2019 Oct 1 [cited 2022 Mar 2]; 161. Available from: www.elsevier.com/locate/apthermeng https://doi.org/10.1016/j. applthermaleng.2019.114102 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114102

Sundén B. Thermal management of batteries. Hydrog Batter Fuel Cells. 2019 Jan 1; 93-110. https://doi. org/10.1016/B978-0-12-816950-6.00006-3 DOI: https://doi.org/10.1016/B978-0-12-816950-6.00006-3

Verma A, Shashidhara S, Rakshit D. A comparative study on battery thermal management using phase change material (PCM). Therm Sci Eng Prog. 2019; 11:74-83. https://doi.org/10.1016/j.tsep.2019.03.003 DOI: https://doi.org/10.1016/j.tsep.2019.03.003

Jaguemont J, Omar N, Van den Bossche P, Mierlo J. Phase Change Materials (PCM) for automotive applications: A review. Appl Therm Eng [Internet]. 2018; 132:308-20. Available from: https://doi.org/10.1016/j.applthermaleng.2017.12.097 DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.097

Li ZX, Al-Rashed AAAA, Rostamzadeh M, Kalbasi R, Shahsavar A, Afrand M. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermos physical properties and thickness of PCM. Energy Convers Manag. 2019; 195(April):43-56. https://doi.org/10.1016/j.enconman.2019.04.075 DOI: https://doi.org/10.1016/j.enconman.2019.04.075

Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev [Internet]. 2011; 15(9):4554-71. Available from: https:// doi.org/10.1016/j.rser.2011.07.096 DOI: https://doi.org/10.1016/j.rser.2011.07.096

Wei L, Zhichun L, Tingzhen M, Zengyuan G. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement. Int J Heat Mass Transf. 2009 Sep 1; 52(19-20):4669-72. https://doi.org/10.1016/j. ijheatmasstransfer.2009.02.018 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.018

Bayat M, Faridzadeh MR, Toghraie D. Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Therm Sci Eng Prog [Internet]. 2018; 5(September 2017):50-9. https://doi. org/10.1016/j.tsep.2017.10.021 DOI: https://doi.org/10.1016/j.tsep.2017.10.021

Karami R, Kamkari B. Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units. Appl Therm Eng. 2019 Jan 5; 146:45-60. https:// doi.org/10.1016/j.applthermaleng.2018.09.105 DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.105

Weng J, Ouyang D, Yang X, Chen M, Zhang G, Wang J. Optimization of the internal fin in a phase-changematerial module for battery thermal management. Appl Therm Eng. 2020 Feb 25; 167:114698. https://doi. org/10.1016/j.applthermaleng.2019.114698 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114698

Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transf [Internet]. 2019; 145:118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739

Alazwari MA, Algarni M, Safaei MR, Abdulaziz K, Arabia S.1. ARTICLE INFO. 2022; 1-50.

Buonomo B, Ercole D, Manca O, Menale F. Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials. Energy Procedia. 2018 Aug 1; 148:1175-82. https://doi.org/10.1016/j.egypro.2018.08.024 DOI: https://doi.org/10.1016/j.egypro.2018.08.024

An Z, Chen X, Zhao L, Gao Z. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling. Appl Therm Eng. 2019 Dec 25; 163:114345. https://doi.org/10.1016/j.applthermaleng.2019.114345 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114345

Choudhari VG, Dhoble AS, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int J Heat Mass Transf. 2020; 163:120434. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120434 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120434

Joshi AK, Dandotiya D, Ramesh CS, Panchal S. Numerical Analysis of Battery Thermal Management System Using Passive Cooling Technique. SAE Tech Pap Ser. 2023; 1:1- 8. https://doi.org/10.4271/2023-01-0990 DOI: https://doi.org/10.4271/2023-01-0990

Most read articles by the same author(s)