Some Results Involving the pRq(α,β,z) Function

Jump To References Section


  • Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology,Surat-395007 ,IN
  • Department of Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology , Surat-395007 ,IN



Gamma Function, Beta Function, Hermite Polynomial, Legendre Polynomial, Legendre Function, Jacobi Polynomial, Galue Type Struve Function(GTSF).


The main aim of this paper is to discuss some classical properties of the pRq(α, β; z) function such as integrals involving pRq(α, β; z) function and its product with some algebraic functions and higher Tanscendental function viz, Hermite polynomial, Legendre polynomial, Legendre function, Jacobi polynomial, Galue type Struve function, six summation formulas of pRq(α, β; z) function and relation betweenpRq(α, β; z) and pRq(α, β;- z) functions.


Download data is not yet available.


Metrics Loading ...



How to Cite

Thakkar, Y. M., & Shukla, A. (2023). Some Results Involving the <sub>p</sub>R<sub>q</sub>(&#945;,&#946;,z) Function. The Journal of the Indian Mathematical Society, 90(3-4), 329–342.
Received 2021-12-13
Accepted 2022-03-28
Published 2023-07-12



G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, UK, 2001.

R. Desai, A. K. Shukla, Some results on function pRq(α, β; z), J. Math. Anal. Appl., 448 (1)(2017), 187 – 197.

R. Desai, A. K. Shukla, Note on the pRq(α, β; z) function, J. Indian Math. Soc., 88 (3-4)(2021), 288 – 297.

A. Erd´elyi, H. Bateman, Higher transcendental functions. Vol. I, McGraw-Hill, New York, 1953.

S. Haq, A. H. Khan, K. S. Nisar, A Study of New Class of Integrals Associated with Generalized Struve Function and Polynomials, Commun. Korean Math. Soc., 34 (1)(2019), 169 – 183.

R. B. Paris, A Kummer-type Transformation for a2F2 Hypergeometric Function, J. Comput. Appl. Math., 173 (2)(2005), 379 – 382.

E. D. Rainville, Special Functions, Mcmillan, New York, 1960.

H. M. Srivastava, Certain Summation Formulas Involving Generalized Hypergeometric Function, Comment Math. Univ. St. Pauli, XXI-2 (1972), 25 – 34.