Some Properties of Schubert Varieties

Jump To References Section


  • Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400005 ,IN


This paper is a continuation of our earlier paper [10]. With notations as in [10] (some of which are recalled in 1 and 2, below), we prove the following

1. THEOREM (6.1, below). The Picard group of a non-trivial Schubert variety Ω in the Grassmawt variety Gd,n is Z and is generated by the class of θΩ (1).


Download data is not yet available.


Metrics Loading ...




How to Cite

Musili, C. (1974). Some Properties of Schubert Varieties. The Journal of the Indian Mathematical Society, 38(1-4), 131–145. Retrieved from



C.C. CHEVALLEY: Sur les decompositions cellulaircs des espaces G/B (unpublished).

A. GROTHENDIECK: Cohomologie locale des faisceaux coherents et thioremes de Lefschetz locaux et globaux (SGA2), North-Holland Publishing Company, Amsterdam (1968).

A. GROTHENDIECK AND J. DIEUDONNE: Elements de Goemetrie Atgebrique, EGA IV, Publ. Math. IHES, Nos. 28 and 32 (1966-67).

M. HOCHSTER: Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay, J. Algebra, Vol. 25 (1973), pp. 40-57.

M. HOCHSTER AND J.A. EAGON: Cohen-Macaulay rings, invariant theory, and the generic perfection of the determinantal loci, Amer. J. Maths., Vol. XCIII (1971), pp. 1020-58.

G. KEMI»F: Schubert methods with an application to algebraic curves, Stichting mathematisch centrum, Amsterdam (1971).

S L. KLEIMAN AND J. LANDOLFI: Geometry and deformation of special Schubert varieties, Composito Mathematica, Vol. 23 (1971), pp. 407-34.

D. LAKSOV: The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Mathematica, Vol. 129 (1972), pp. 1-9.

M. P. MURTHY: A note on factorial rings. Arch, der Math., Vol. XV (1964), pp. 418-20.

C. MUSILI: Postulation formula for Schubert varieties, J. Indian Math. Soc, Vol. 36 (1972), pp. 143-71.

: Thesis, Bombay, 1973.

P.SAMUEL: Lectures on Unique Factorisation Domains, Tata Inst. Lecture notes, Bombay (1964).

L. SZPIRO: Travaux de Kempf, Kleitnan, Laksov,sur1es dhiseursexceptionnels, Seminaire N. Bourbaki, Exp. 417,24 erne annee, 1971-22.