Pancreatic β-Cell Dysfunction in Diabetes

Jump To References Section

Authors

  • The Jackson Laboratory, Bar Harbor, 04609, Maine ,US
  • School of Science, Navrachana University, Vadodara 391410, Gujarat ,IN

DOI:

https://doi.org/10.18311/jer/2022/32055

Keywords:

β-Cell Dedifferentiation, β-Cell Dysfunction, β-Cell Identity

Abstract

The decline in functional β-cell mass and β-cell dysfunction causes diabetes. Pancreatic β-cells play a fundamental role in controlling the glucose milieu, and β-cells of diabetic patients poorly respond to glucose. The mechanism underlying the pathology of impaired β-cell function is a unique challenge. This concise review summarizes the identity of β-cells during the progression and established diabetes. Understanding β-cell heterogeneity and the dynamic functional state during health and disease progression would be important for designing diabetes therapeutics to restore the β-cell mass by cellreplacement or regeneration approaches.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-10

How to Cite

Ansarullah, & Ramachandran, A. V. (2023). Pancreatic β-Cell Dysfunction in Diabetes. Journal of Endocrinology and Reproduction, 26(4), 207–212. https://doi.org/10.18311/jer/2022/32055

Issue

Section

Review Article

 

References

Gemmill CL. The Greek concept of diabetes. Bull N Y Acad Med. 1972; 48(8):1033-6.

Hegele RA, Maltman GM. Insulin’s centenary: the birth of an idea. Lancet Diabetes Endocrinol. 2020; 8(12):971-7. https://doi.org/10.1016/S2213-8587(20)30337-5 PMID:33129375

Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. https://doi.org/10.1016/j.diabres.2021.109119 PMID:34879977

Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003; 52(1):102-10. https://doi.org/10.2337/diabetes.52.1.102 PMID:12502499

Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013; 4(4):114-23. https://doi.org/10.4239/wjd.v4.i4.114 PMID:23961321 PMCID:PMC3746083

Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: Opportunities and challenges. Endocrine Connections. BioScientifica Ltd. 2021; p. R213-28. https://doi.org/10.1530/EC-21-0260 PMID:34289444 PMCID:PMC8428079

Jermendy A, Toschi E, Aye T, et al. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia. 2011; 54(3):594-604. https://doi.org/10.1007/s00125-010-2036-x PMID:21240476 PMCID:PMC3045081

Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β;-cell dedifferentiation in diabetes: Recent findings and future research directions. Journal of Endocrinology. BioScientifica Ltd. 2018; p. R109-43. https://doi.org/10.1530/JOE-17-0516 PMID:29203573

Diedisheim M, Oshima M, Albagli O, et al. Modeling human pancreatic beta cell dedifferentiation. Mol Metab. 2018; 10:74-86. https://doi.org/10.1016/j.molmet.2018.02.002 PMID:29472102 PMCID:PMC5985229

Talchai C, Xuan S, Lin HV, et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012; 150(6):1223-34. https://doi.org/10.1016/j.cell.2012.07.029 PMID:22980982 PMCID:PMC3445031

Sachs S, Bastidas-Ponce A, Tritschler S, et al. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab. 2020; 2(2):192-209. https://doi.org/10.1038/s42255-020-0171-3 PMID:32694693

Dore BA, Grogan WM, Madge GE, et al. Biphasic development of the postnatal mouse pancreas. Biol Neonate. 1981; 40(5-6):209-17. https://doi.org/10.1159/000241494 PMID:7032613

Blum B, Hrvatin S, Schuetz C, et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol. 2012; 30(3):261-4. https://doi.org/10.1038/nbt.2141 PMID:22371083 PMCID:PMC4617627

Jacovetti C, Matkovich SJ, Rodriguez-Trejo A, et al. Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun. 2015; 6:8084. https://doi.org/10.1038/ncomms9084 PMID:26330140 PMCID:PMC4569696 15. Brunzell JD, Robertson RP, Lerner RL, et al. Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. The Journal of Clinical Endocrinology and Metabolism. 1976; 42(2):222-9. https://doi.org/10.1210/jcem-42-2-222 PMID:1262429

Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999; 104(6):787-94. https://doi.org/10.1172/JCI7231 PMID:10491414 PMCID:PMC408438

van Haeften TW, Pimenta W, Mitrakou A, et al. Relative conributions of beta-cell function and tissue insulin sensitivity to fasting and postglucose-load glycemia. Metabolism. 2000; 49(10):1318-25. https://doi.org/10.1053/meta.2000.9526 PMID:11079822

White MG, Marshall HL, Rigby R, et al. Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes. Diabetes Care. 2013; 36(11):3818-20. https://doi.org/10.2337/dc13-0705 PMID:24062329 PMCID:PMC3816907

Marselli L, Suleiman M, Masini M, et al. Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia. 2014; 57(2):362-5. https://doi.org/10.1007/s00125-013-3098-3 PMID:24233056

Moin ASM, Butler AE. Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Curr Diab Rep. 2019; 19(9):83. https://doi.org/10.1007/s11892-019-1194-6 PMID:31401713 PMCID:PMC6689286

Rutter GA, Pullen TJ, Hodson DJ, et al. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015; 466(2):203-18. https://doi.org/10.1042/BJ20141384 PMID:25697093

Salinno C, Buttner M, Cota P, et al. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab. 2021; 49:101188. https://doi.org/10.1016/j.molmet.2021.101188 PMID:33582383 PMCID:PMC7932895

Salinno C, Cota P, Bastidas-Ponce A, et al. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci. 2019; 20(21). https://doi.org/10.3390/ijms20215417 PMID:31671683 PMCID:PMC6861993

Casteels T, Zhang Y, Frogne T, et al. An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab. 2021; 54. https://doi.org/10.1016/j.molmet.2021.101329 PMID:34454092 PMCID:PMC8476777

Wang Z, York NW, Nichols CG, et al. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 2014; 19(5):872-82. https://doi.org/10.1016/j.cmet.2014.03.010 PMID:24746806 PMCID:PMC4067979

Laybutt DR, Sharma A, Sgroi DC, et al. Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem. 2002; 277(13):10912-21. https://doi.org/10.1074/jbc.M111751200 PMID:11782487

Jonas JC, Sharma A, Hasenkamp W, et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem. 1999; 274(20):14112-21. https://doi.org/10.1074/jbc.274.20.14112 PMID:10318828

Dahan T, Ziv O, Horwitz E, et al. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes. Diabetes. 2017; 66(2):426-36. https://doi.org/10.2337/db16-0641 PMID:27864307 PMCID:PMC5248995

Cinti F, Bouchi R, Kim-Muller JY, et al. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab. 2016; 101(3):1044-54. https://doi.org/10.1210/jc.2015-2860 PMID:26713822 PMCID:PMC4803182

Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3):966-72. https://doi.org/10.1172/JCI64098 PMID:23454759 PMCID:PMC3582125

He S, Sharpless NE. Senescence in Health and Disease. Cell. 2017; 169(6):1000-11. https://doi.org/10.1016/j.cell.2017.05.015 PMID:28575665 PMCID:PMC5643029

Casteels T, Zhang Y, Frogne T, et al. An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab. 2021; 54:101329. https://doi.org/10.1016/j.molmet.2021.101329 PMID:34454092 PMCID:PMC8476777

Oppenlander L, Palit S, Stemmer K, et al. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab. 2021; 54:101330. https://doi.org/10.1016/j.molmet.2021.101330 PMID:34500108 PMCID:PMC8487975

Jain, C., Ansarullah, Bilekova, S. et al. Targeting pancreatic β cells for diabetes treatment. Nat Metab. 2022; 4:1097-1108. https://doi.org/10.1038/s42255-022-00618-5 PMID:36131204

Most read articles by the same author(s)