Cadmium-Induced Perturbation of Spleen Redox Status: Therapeutic Role of Pumpkin Seed Protein Isolate

Jump To References Section

Authors

  • Department of Physiology, Serampore College, 9 William Carey Road, Hooghly - 712201, West Bengal ,IN
  • Department of Physiology, Serampore College, 9 William Carey Road, Hooghly - 712201, West Bengal ,IN
  • Department of Physiology, Medical College and Hospital, Kolkata - 700073, West Bengal ,IN
  • Department of Physiology, Kalka Dental College, Partapur By-Pass Road, Meerut - 250006, Uttar Pradesh ,IN
  • Department of Physiology, Hooghly Mohsin College, Chinsurah - 712101, West Bengal ,IN
  • Department of Physiology, Serampore College, 9 William Carey Road, Hooghly - 712201, West Bengal ,IN
  • Department of Physiology, Serampore College, 9 William Carey Road, Hooghly - 712201, West Bengal ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i3/32544

Keywords:

Cadmium Toxicity, Cytokines, Oxidative Stress, PSPI, ROS, Spleen Histology

Abstract

One of the major threats to humanity is from the exposure of heavy metals irrespective of its source. Cadmium is one of such heavy metals to which humans are exposed in their daily lives via food or environment. Regardless of this, there is no established or efficient way of recycling Cadmium. On the other hand, Pumpkin seeds have innumerable health aiding properties. The present study aims to understand the antioxidative and anti-inflammatory properties of Pumpkin Seeds Protein Isolate (PSPI) against Cadmium mediated oxidative stress in spleen. Twenty male albino rats were divided into four groups; Control, Cadmium treated, Cadmium treated and PSPI 1 supplemented, Cadmium treated and PSPI 2 supplemented. After completion of treatment period (21 days), oxidative stress parameters, ROS generation levels and proinflammatory cytokines were measured along with histopathological evaluations. PSPI supplementation was observed to have significant free radical scavenging activities as evidenced by decreased lipid peroxidation and nitric oxide generation simultaneously with increased glutathione level, activities of superoxide dismutase and catalase. Cadmium also caused an elevation in tumor necrosis factor and interleukin-6 as well as ROS generation levels which were substantially reduced upon supplementation with PSPI. Furthermore, cadmium-induced micro architectural changes in the spleen were also countered upon PSPI supplementation. In summary, both lower and higher doses of PSPI supplementation curtail the cadmium induced oxidative stress, ROS levels, proinflammatory cytokines and damage in the splenic tissue. The Results of this study necessitates further mechanistic study to establish key role of PSPI in amelioration of cadmium toxicity.

Downloads

Download data is not yet available.

Published

2023-09-20

How to Cite

Singh, S., Banerjee, O., Saha, I., Kundu, S., Syamal, A. K., Maji, B. K., & Mukherjee, S. (2023). Cadmium-Induced Perturbation of Spleen Redox Status: Therapeutic Role of Pumpkin Seed Protein Isolate. Toxicology International, 30(3), 279–288. https://doi.org/10.18311/ti/2023/v30i3/32544
Received 2023-01-23
Accepted 2023-04-25
Published 2023-09-20

 

References

Saoudi A, Zeghnoun A, Bidondo ML, Garnier R, Cirimele V, Persoons R, et al. Urinary arsenic levels in the French adult population: The French National Nutrition and Health Study, 2006–2007. Sci Total Environ. 2012; 433:206-15. https://doi.org/10.1016/j.scitotenv.2012.06.053 PMID: 22796411. DOI: https://doi.org/10.1016/j.scitotenv.2012.06.053

Åkesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, et al. Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect. 2006; 114(6):830-4. https://doi.org/10.1289/ ehp.8763 PMCID: PMC1480481. DOI: https://doi.org/10.1289/ehp.8763

Beyersmann D, Hartwig A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008; 82(8):493-512. https://doi.org/10.1007/ s00204-008-0313-y PMID: 18496671. DOI: https://doi.org/10.1007/s00204-008-0313-y

Mascagni P, Consonni D, Bregante G, Chiappino G, Toffoletto F. Olfactory function in workers exposed to moderate airborne cadmium levels. Neurotoxicology. 2003; 24(4-5):717-24. https://doi.org/10.1016/s0161- 813x(03)00024-x PMID: 12900085. DOI: https://doi.org/10.1016/S0161-813X(03)00024-X

Banerjee M, Banerjee O, Singh S, Mukherjee S. Protective effects of black tea (Camellia sinensis) extract on endosulfan induced oxidative stress, inflammation and hepatic damage in rats. Toxicol Int. 2022; 29(3):353-61. https://doi. org/10.18311/ti/2022/v29i3/29822 DOI: https://doi.org/10.18311/ti/2022/v29i3/29822

Kaur C, Kapoor HC. Anti‐oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci. 2002; 37(2):153-61. https://doi.org/10.1046/j.1365- 2621.2002.00552.x DOI: https://doi.org/10.1046/j.1365-2621.2002.00552.x

Isabelle M, Lee BL, Lim MT, Koh WP, Huang D, Ong CN. Antioxidant activity and profiles of common fruits in Singapore. Food Chem. 2010; 123(1):77-84. https://doi. org/10.1016/J.FOODCHEM.2010.04.002 DOI: https://doi.org/10.1016/j.foodchem.2010.04.002

LaChance LR, Ramsey D. Antidepressant foods: An evidence-based nutrient profiling system for depression. World J Psychiatry. 2018; 8(3):97. https://doi.org/10.5498/ wjp.v8.i3.97 PMCID: PMC6147775. DOI: https://doi.org/10.5498/wjp.v8.i3.97

Batool M, Ranjha MM, Roobab U, Manzoor MF, Farooq U, Nadeem HR, et al. Nutritional value, phytochemical potential and therapeutic benefits of pumpkin (Cucurbita sp). Plants. 2022; 11(11). https://doi.org/10.3390/ plants11111394 DOI: https://doi.org/10.3390/plants11111394

Alhawiti AO, Toulah FH, Wakid MH. Anthelmintic potential of cucurbitapepo seeds on hymenolepis nana. Acta Parasitol. 2019; 64(2):276-81. https://doi.org/10.2478/ s11686-019-00033-z PMID: 30778840. DOI: https://doi.org/10.2478/s11686-019-00033-z

Kushawaha DK, Yadav M, Chatterji S, Srivastava AK, Watal G. Evidence based study of antidiabetic potential of C. maxima seeds - In vivo. J Tradit Complement Med. 2017; 7(4):466-70. https://doi.org/10.1016/j.jtcme.2016.12.001 PMCID: PMC5634717. DOI: https://doi.org/10.1016/j.jtcme.2016.12.001

Makni M, Fetoui H, Gargouri NK, Garoui EM, Jaber H, Makni J, et al. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats. Food Chem Toxicol. 2008; 46(12):3714-20. https://doi.org/10.1016/j. fct.2008.09.057 PMID: 18938206. DOI: https://doi.org/10.1016/j.fct.2008.09.057

Mohamed RA, Ramadan RS, Ahmed LA. Effect of substituting pumpkin seed protein isolate for casein on serum liver enzymes, lipid profile and antioxidant enzymes in CCl4-intoxicated rats. Adv Biol Res. 2009; 3(1-2):9-15. ISSN 1992-0067.

Oliveira H, Spanò M, Santos C, Pereira Mde L. Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol. 2009; 28(4):550-5. https://doi.org/10.1016/j. reprotox.2009.08.001 PMID: 19695322. DOI: https://doi.org/10.1016/j.reprotox.2009.08.001

Feng X, Jin X, Zhou R, Jiang Q, Wang Y, Zhang X, et al. Deep learning approach identified a gene signature predictive of the severity of renal damage caused by chronic cadmium accumulation. J Hazard Mater. 2022; 433. https://doi. org/10.1016/j.jhazmat.2022.128795 PMID: 35405588. DOI: https://doi.org/10.1016/j.jhazmat.2022.128795

Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, et al. Cadmium exposure in the population: From health risks to strategies of prevention. Biometals. 2010; 23(5):769-82. https://doi.org/10.1007/s10534-010- 9343-z PMID: 20517707. DOI: https://doi.org/10.1007/s10534-010-9343-z

Puertollano MA, de Pablo MA, Álvarez de Cienfuegos G. Relevance of dietary lipids as modulators of immune functions in cells infected with Listeria monocytogenes. Clin Vaccine Immunol. 2002; 9(2):352-7. https://doi. org/10.1128/cdli.9.2.352-357.2002 .PMCID: PMC119940. DOI: https://doi.org/10.1128/CDLI.9.2.352-357.2002

Wills ED. Evaluation of lipid peroxidation in lipids and biological membranes in biochemical toxicology: A practical approach. Oxford: Oxford, IRL Press; 1987.

Raso GM, Meli R, Gualillo O, Pacilio M, Carlo RD. Prolactin induction of nitric oxide synthase in rat C6 glioma cells. J Neurochem. 1999; 73(6):2272-7. https://doi. org/10.1046/j.1471-4159.1999 DOI: https://doi.org/10.1046/j.1471-4159.1999.0732272.x

Sun YI, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988; 34(3):497-500. https://doi.org/10.1093/clinchem/34.3.497 DOI: https://doi.org/10.1093/clinchem/34.3.497

Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121- 6. 10.1016/s0076-6879(84)05016-3 PMID: 6727660. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25:192-205. https://doi. org/10.1016/0003-2697(68)90092-4 PMID: 4973948. DOI: https://doi.org/10.1016/0003-2697(68)90092-4

Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016; 1863(12):2977-92. https://doi. org/10.1016/j.bbamcr.2016.09.012 PMID: 27646922. DOI: https://doi.org/10.1016/j.bbamcr.2016.09.012

Bown MJ, Nicholson ML, Bell PR, Sayers RD. Cytokines and inflammatory pathways in the pathogenesis of multiple organ failure following abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2001; 22(6):485-95. https://doi. org/10.1053/ejvs.2001.1522 PMID: 11735196. DOI: https://doi.org/10.1053/ejvs.2001.1522

Ray D, Jadav P, Panda P, Mukherjee S, Ghosh S. Protective role of capsaicin against sodium fluoride-induced oxidative damage of liver in rats. Toxicol Int. 2021; 28(1):31-8. https:// doi.org/10.18311/ti/2021/v28i1/25920 DOI: https://doi.org/10.18311/ti/2021/v28i1/25920

Lubos E, Handy DE, Loscalzo J. Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci. 2008; 13. https://doi.org/10.2741/3084 PMCID: PMC2617738. DOI: https://doi.org/10.2741/3084

Kovacic P, Cooksy A. Iminium metabolite mechanism for nicotine toxicity and addiction: Oxidative stress and electron transfer. Med Hypotheses. 2005; 64(1):104-11. https://doi. org/10.1016/j.mehy.2004.03.048 PMID: 15533623. DOI: https://doi.org/10.1016/j.mehy.2004.03.048

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014. https://doi. org/10.1155/2014/360438 PMCID: PMC4066722. DOI: https://doi.org/10.1155/2014/360438

Luqman S, Rizvi SI. Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress. Phytother Res. 2006; 20(4):303-6. https://doi.org/10.1002/ptr.1861 PMID: 16557614. DOI: https://doi.org/10.1002/ptr.1861

Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domıínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev. 2001; 14(3):584-640. https://doi.org/10.1128/cmr.14.3.584- 640.2001 PMCID: PMC88991. DOI: https://doi.org/10.1128/CMR.14.3.584-640.2001

Tretter L, Sipos I, Adam-Vizi V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochem. Res. 2004; 29(3):569- 77. https://doi.org/10.1023/b:nere.0000014827.94562.4b PMID: 15038604. DOI: https://doi.org/10.1023/B:NERE.0000014827.94562.4b

Gholami A, Ataei S, Ahmadimoghaddam D, Omidifar N, Nili-Ahmadabadi A. Pentoxifylline attenuates arsenic trioxide-induced cardiac oxidative damage in mice. Oxid Med Cell Longev. 2021; 2021. https://doi. org/10.1155/2021/6406318 PMCID: PMC7810555. DOI: https://doi.org/10.1155/2021/6406318

Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004; 134(3):489-92. https://doi.org/10.1093/jn/134.3.489 PMID: 14988435. DOI: https://doi.org/10.1093/jn/134.3.489

Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015; 2015. https://doi. org/10.1155/2015/610813 PMCID: PMC4365363. DOI: https://doi.org/10.1155/2015/610813

Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, et al. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res. 2010; 15(2):1-3. https://doi. org/10.1186/2047-783x-15-s2-120 PMCID: PMC4360270. DOI: https://doi.org/10.1186/2047-783X-15-S2-120

Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. ChemSoc Rev. 2013; 42(12):5552-76. https://doi.org/10.1039/c3cs60064e PMCID: PMC3665642. DOI: https://doi.org/10.1039/c3cs60064e

Demenesku J, Mirkov I, Ninkov M, Aleksandrov AP, Zolotarevski L, Kataranovski D, et al. Acute cadmium administration to rats exerts both immunosuppressive and proinflammatory effects in spleen. Toxicology. 2014; 326:96-108. https://doi.org/10.1016/j.tox.2014.10.012 PMID: 25446329. DOI: https://doi.org/10.1016/j.tox.2014.10.012

Dotto JM, Chacha JS. The potential of pumpkin seeds as a functional food ingredient: A review. Sci Afr. 2020; 10. https://doi.org/10.1016/j.sciaf.2020.e00575 DOI: https://doi.org/10.1016/j.sciaf.2020.e00575

Sapkota B, Devkota HP, Poudel P. Citrus maxima (Brum.) Merr. (Rutaceae): Bioactive chemical constituents and pharmacological activities. Evid Based Complement Alternat Med. 2022. https://doi.org/10.1155/2022/8741669 PMCID: PMC9170406. DOI: https://doi.org/10.1155/2022/8741669

Abou-Elella F, Mourad R. Anticancer and anti-oxidant potentials of ethanolic extracts of Phoenix dactylifera, Musa acuminata and Cucurbita maxima. Res J Pharm Biol Chem Sci. 2015; 6(1):710-20.https://doi.org/10.1016/j.sciaf.2020. e00575