Protective Effect of L-Carnitine against Deltamethrin Induced Male Reproductive Toxicity in Adult Rats Exposed at their Prepubertal Stage

Jump To References Section


  • Department of Biotechnology, Vikrama Simhapuri University, Nellore - 524320, Andhra Pradesh ,IN
  • Dr. Samuel George Institute of Pharmaceutical Sciences, Markapur - 523316, Andhra Pradesh ,IN
  • School of Pharmacy, The Assam Kaziranga University, Koraikhowa, NH-37, Jorhat - 785006, Assam ,IN
  • Department of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, Indira Nagar, Gorimedu – 605006, Puducherry ,IN
  • Department of Biotechnology, Vikrama Simhapuri University, Nellore - 524320, Andhra Pradesh ,IN
  • Department of Biotechnology, Vikrama Simhapuri University, Nellore - 524320, Andhra Pradesh ,IN
  • Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur - 522302, Andhra Pradesh ,IN



Deltamethrin, L Carnitine, Prepubertal Rats, Reproductive Toxicity


The present study aims to investigate the protective role of L-Carnitine (LC) against Deltamethrin-induced testicular toxicity in male rats exposed during their early developmental period. DTM was administered at a dose of 6 mg/kg body weight to the prepubertal rat’s Post-Natal Day (PND) 23 rats through oral route and exposure was continued until they reach PND 90. After completion of the exposure period, male rats were assessed for reproductive endpoints. Deltamethrin exposure caused a significant reduction in testosterone production and decreased the sperm parameters such as sperm count, sperm motility, sperm viability and sperm membrane integrity. Deltamethrin intoxication also reduced the reproductive organs’ weight and testicular steroidogenic enzymes (3β-hydroxysteriod dehydrogenase and 17β-hydroxysteriod dehydrogenase) levels. Further DTM exposure induced the oxidative stress as evidenced by the significant reduction in the superoxide dismutase, catalase, and glutathione levels with significant elevation in the malondialdehyde. DTM also induced the significant sperm DNA damage. In addition, DTM exposure significantly declined the testosterone levels over the control group, indicating the impaired steroidogenesis. In addition to the compromised steroidogenesis DTM exposure also deteriorated the testicular architecture according to the histological observations. On the other hand, therapy with LC (100 mg/kg body weight) improved the biomass of reproductive organs, the features of the sperm, testicular steroidogenesis and testicular antioxidant enzymes levels. Concluding that DTM might disturb the testicular antioxidant level that eventually impaired the reproductive health of rats. However, LC supplementation mitigated the reproductive toxicity through its antioxidant property.


Download data is not yet available.



How to Cite

Thathapudi, D., Yendluri, R. J., Adimulapu, A., Gunda, M., Vadela, M., Sainath, S. B., & Manohar, P. R. V. (2023). Protective Effect of L-Carnitine against Deltamethrin Induced Male Reproductive Toxicity in Adult Rats Exposed at their Prepubertal Stage. Toxicology International, 30(3), 269–278.
Received 2022-12-29
Accepted 2023-05-10
Published 2023-09-20



Walker K. Cost‐comparison of DDT and alternative insecticides for malaria control. Med Vet Ent. 2000; 14(4):345-54. 2915.2000.00262.x PMid:11129697 DOI:

Wouters W, Bercken JVD. Action of pyrethroids. Gen. Pharmacol. 1978; 9:387-398. 3623(78)90023-X PMid:365673 DOI:

LaForge FB, Markwood LN. Organic insecticides. Annu Rev Biochem. 1938; 1:473-90. DOI:

Casida JE. Pyrethrum flowers and pyrethroid insecticides. Environ. Health Perspect. 1980; 34:189-202. https:// PMid:6993201 PMCid: PMC1568513 DOI:

Elliott M, Janes NF. Synthetic pyrethroids - A new class of insecticide. Chem Soc Rev. 1978; 1:473-505. https://doi. org/10.1039/cs9780700473 DOI:

Kaneko H, Ohkawa H, Miyamoto J. Degradation and movement of permethrin isomers in soil. J Pestic Sci., 1978; 3:43-51. DOI:

Lawrence LJ, Casida J. Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships. Pestic Biochem physiol. 1982; 18:9-14. https://doi. org/10.1016/0048-3575(82)90082-7 DOI:

Daveedu T, Sainath SB. Deltamethrin induced reproductive impairment in adult male rats exposed during prepubertal stage. Int J Biol Pharm Allied Sci. 2023; 12(11).

Morgan MK. Children’s exposures to pyrethroid insecticides at home: A review of data collected in published exposure measurement studies conducted in the United States. Int J Env Res Publ Health. 2012; 9(8):2964-85. https://doi. org/10.3390/ijerph9082964 PMid:23066409 PMCid: PMC3447599 DOI:

Lenz A, Lombardo F, Sgro P. Use of carnitine therapy in selected cases of male factor infertility: A double-blind crossover trial. Fertil Steril. 2003; 79:292–300. https://doi. org/10.1016/S0015-0282(02)04679-4 PMid: 12568837 DOI:

Ng CM, Blackman MR, Wang C, Swerdloff RS. The role of carnitine in the male reproductive system. Ann N Y Acad Sci. 2004; 1033:177-88. PMid:15591015 DOI:

Ishi T, Shimpo Y, Matsuoka Y, Kinositha K. Anti-apoptotic effect of acetyl-L-carnitine and L-carnitine in primary cultured neurons. Jpn J Pharmacol. 2000; 83:119–24. https:// PMid:10928324 DOI:

Galli G, Fratelli M. Activation of apoptosis by serum deprivation in a teratocarcinoma cell line: Inhibition by L-acetylcarnitine. Exp Cell Res. 1993; 204:54–60. https:// PMid:8416796 DOI:

Arrigoni-Martelli E, Caso V. Carnitine protects mitochondria and removes toxic acyls from xenobiotics. Drugs Exp Clin Res. 2001; 27:27–49.

Costa M, Canale D, Filicori M, d’lddio S, Lenzi A. Italian study group on carnitine and male infertility. L‐carnitine in idiopathic asthenozoospermia: A multicenter study. Androl. 1994; 26(3):155-9. https://doi. org/10.1111/j.1439-0272.1994.tb00780.x DOI:

Enomoto A, Wempe MF, Tsuchida H. Molecular identification of a novel carnitine transporter specific to human testis: Insights into the mechanism of carnitine recognition. J Biol Chem. 2002; 277: 36262–271. PMid:12089149 DOI:

Jeulin C, Lewin LM. Role of free L-carnitine and acetyl- L-carnitine in postgonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996; 2:87–102. PMid:9079406 DOI:

Caviglia D, Scarabelli L, Palmero S. Effects of carnitines on rat Sertoli cell protein metabolism. Horm Metab Res. 2004; 36:221–225. PMid:15114520 DOI:

Belsey MA, Moghissi KS, Eliasson R, Paulsen CA, Gallegos AJ, Prasad MR. Laboratory manual for the examination of human semen and semen-cervical mucus interaction, Singapore: Press Concern; 1980.

Talbot P, Chacon RS. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981; 215(2):201–08. PMid:6168732 DOI:

Jeyendran RS, Van Der Ven HH, Zaneveld LJD. The hypo-osmotic swelling test: An update. Arch. Androl. 1992;29(2):105–16. 01485019208987714 PMid:1456832 DOI:

Blazak WF, Treinen KA, Juniewicz PE. Application of testicular sperm head counts in the assessment of male reproductive toxicity. In: Chapin RE, Heindel, Jerrold J, editors. Methods in Toxicology. Male Reproductive Toxicology. Academic Press; 1993. p. 86-94. https://doi. org/10.1016/B978-0-12-461207-5.50009-2 DOI:

Linder RE, Strader LF, Slott VL, Suarez JK. Endpoints of spermatotoxicity in the rat after short duration exposures to fourteen reproductive toxicants, Reprod Toxicol. 1992; 6:491. PMid:1288759 DOI:

Simon L, Carrell DT. Sperm DNA damage measured by comet assay. Methods Mol Biol. 2013; 927: 137–46. https:// PMid:22992910 DOI:

Chance AC, Maehly. Assay of catalase and peroxidises. Methods Enzymol. 1955; 2:764–75. S0076-6879(55)02300-8 DOI:

Beutler E. The preparation of red cells for assay. In: Beutler E, editor. Red Cell Metabolism: A manual of biochemical methods. New York: Grune and Straton Company; 1975. p. 8–18.

Ohkawa H. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 44:276-8.

Brancraft JD, Stevens A. Theory and practice of histological techniques. 2nd ed. New York, USA: Chruchill Livingstone; 1982.

Sharma P, Huq AU, Singh R. Cypermethrin-induced reproductive toxicity in the rat is prevented by resveratrol. Journal of Human Reproductive Sciences. 2014; 7:99–106. PMid:25191022 PMCid:PMC4150150 DOI:

Desai K, Moid R, Patel NPB, Highland HN. Evaluation of deltamethrin induced reproductive toxicity in male Swiss Albino mice. Asian Pac J Reprod. 2016; 5(1):24-30. https:// DOI:

Aksu E, Kandemir F, Özkaraca M, Ömür A, Küçükler A, Çomaklı S. Rutin ameliorates cisplatin-induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats. Andrologia. 2017; 49(1):e12593. PMid:27106863 DOI:

Saillenfait AM, Ndiaye D, Sabaté JP. Pyrethroids: Exposure and health effects- An update. Int J Hyg Environ Health. 2015; 218:281–92. ijheh.2015.01.002 PMid:25648288 DOI:

Sengupta R, Kim J, Gomes C, Oh S, Park J, Im WB. Effect of ascorbic acid supplementation on testicular steroidogenesis and germ cell death in cadmium treated rats. Mol Cell Endocrinol. 2004; 221(1–2):57-66. https:// PMid:15223132 DOI:

Oda SS, El-Maddawy ZKh. Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol. 2012; 64(7-8):813-9. PMid:21478004 DOI:

Eid A. Protective effect of L-carnitine against cisplatininduced testicular toxicity in rats. Al-Azhar J Ph Sci. 2016; 53(1):123–42. DOI:

Okada FK. Stumpp T, Miraglia SM. Carnitine Diminishes etoposide toxic action on spermatogonial self-renewal and sperm production in adult rats treated in the prepubertal phase. J Histochem Cytochem. 2020; 0022155420916274. Mid:32228279 PMCid:PMC7226625 DOI:

Mardanshahi T, Rezaei N, Zare Z, Shafaroudi MM, Mohammadi H. Effects of L-carnitineon the sperm parameters disorders, apoptosis of spermatogenic cells and testis histopathology in diabetic rats. Int J Reprod Bio Med. 2019; 17(5). PMCid:PMC6653497 DOI: