Protective Effect of Pomegranate Juice Extract Against Antitubercular Drugs Induced Hepatic Fibrosis

Jump To References Section

Authors

  • Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad - 500030, Telangana ,IN
  • Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad - 500030, Telangana ,IN
  • Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Rajendranagar, Hyderabad - 500030, Telangana ,IN
  • Departmen of Veterinary Pharmacology and Toxictology, College of Veterinary Science, Rajendranagar, Hyderabad - 500030, Telangana ,IN
  • Department of Pathology, College of Veterinary Science, Mamanoor, Warangal - 506166, Telangana ,IN
  • Department of Pathology, College of Veterinary Science, Rajendranagar, Hyderabad - 500030, Telangana ,IN

DOI:

https://doi.org/10.18311/ti/2023/v30i3/30923

Keywords:

Antioxidants, Antitubercular Drugs, Hepatotoxicity, Pomegranate Juice, TGF Beta
pharmacology and toxicology

Abstract

The current study aimed to know the therapeutic efficacy of Punica granatum (fruit juice extract) against anti-TB druginduced hepatic fibrosis in rats. 24 male Wistar albino rats were randomly divided into four groups, with six rats in each. INH at 27 mg/kg B.W., RIF at 54 mg/kg B.W., and PZA at 135 mg/kg B.W. were administered orally to Groups 2, 3 and 4 from days 1 to 28. Group 1 was maintained as normal control, and group 2 was a toxic control (administered anti-TB drugs, p/o). Groups 3 and 4 were administered (p/o) with Enalapril at 5mg/kg B.W. and Punica granatum (fresh juice extract) at 1 ml/rat, respectively, from day 1 to 28. Serum samples were collected on the 14th and 28th to assess various biochemical parameters, and liver samples were collected at the end of the experiment to analyze antioxidant parameters, TGF β1, and histopathological examination. The biochemical parameters showed significant (p<0.05) alterations in AST, ALT, GGT, antioxidant profile (TBARS GSH, GST, GPx and SOD), and expression of TGF β1 levels in group 2 along with collagen deposition and alterations in the histopathology when compared with group 1. There was a significant improvement in treatment groups 3 and 4 at different time intervals. These changes were reversed in groups 3 and 4, which were administered Enalapril and Punica granatum juice extract, respectively.

Downloads

Download data is not yet available.

Published

2023-09-20

How to Cite

Ramesh, J., Banothu, A., Bharani, K. K., Shivakumar, P., Jeevanalatha, M., & Ravikumar, Y. (2023). Protective Effect of Pomegranate Juice Extract Against Antitubercular Drugs Induced Hepatic Fibrosis. Toxicology International, 30(3), 309–316. https://doi.org/10.18311/ti/2023/v30i3/30923
Received 2022-08-16
Accepted 2023-06-30
Published 2023-09-20

 

References

Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron acquisition in mycobacterium tuberculosis. Chem Rev. 2019; 119(2):1193-220. https://doi.org/10.1021/acs. chemrev.8b00285 PMid:30474981 PMCid:PMC6568009. DOI: https://doi.org/10.1021/acs.chemrev.8b00285

Davis A, Meintjes G, Wilkinson RJ. Treatment of Tuberculous Meningitis and its complications in adults. Curr Treat Options Neurol. 2018; 20(3):5. https://doi. org/10.1007/s11940-018-0490-9 PMid:29492737 PMCid: PMC5830467. DOI: https://doi.org/10.1007/s11940-018-0490-9

Lee LN, Huang CT, Hsu CL, Chang HC, Jan IS, Liu JL, Sheu JC, Wang JT, Liu WL, Wu HS, Chang CN, Wang JY. Mitochondrial DNA variants in patients with liver injury due to anti-tuberculosis drugs. J Clin Med. 2019; 8(8):1207. https://doi.org/10.3390/jcm8081207 PMid:31412578 PMCid:PMC6723168. DOI: https://doi.org/10.3390/jcm8081207

Arundhathi S, Kumar AA, Reddy AG, Kumar YR, Kumar BA, Chandravathi T. Combined isoniazid and rifampicin induced hepatotoxicity and its amelioration in Wistar rats. Pharma Innovation. 2018; 7(7):1020-3. https://doi. org/10.22271/tpi

Guerrero-Solano JA, Jaramillo-Morales OA, Jiménez- Cabrera T, Urrutia-Hernández TA, Chehue-Romero A, Olvera-Hernández EG, Bautista M. Punica protopunica Balf., the forgotten sister of the common pomegranate (Punica granatum L.): Features and medicinal properties-A review. Plants (Basel). 2020; 9(9):1214. https://doi.org/10.3390/ plants9091214 PMid:32947914 PMCid:PMC7570187. DOI: https://doi.org/10.3390/plants9091214

Palchykov V, Zazharskyi V, Brygadyrenko V, Davydenko P, Kulishenko O, Borovik I, et al. Bactericidal, protistocidal, nematicidal properties and chemical composition of ethanol extract of Punica granatum peel. Diversity. 2019; 27(3):300-6. doi.org/10.15421/011939 DOI: https://doi.org/10.15421/011939

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979; 582(1):67-78. https://doi.org/10.1016/0304- 4165(79)90289-7 DOI: https://doi.org/10.1016/0304-4165(79)90289-7

Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys. 1998; 35(3):184-8. PMID: 9803669.

Balasubramaniam P, Pari L, Menon VP. Protective effect of carrot (Daucus carota L.) against lindane‐induced hepatotoxicity in rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 1998; 12(6):434-6. https://doi.org/10.1002/(SICI)1099- 1573(199809)12:6%3C434::AID-PTR310%3E3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1099-1573(199809)12:6<434::AID-PTR310>3.0.CO;2-U

Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70(1):158-69. PMID: 6066618.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249(22):7130-9. https://doi. org/10.1016/S0021-9258(19)42083-8 PMid:4436300. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

Lowry OH, Rosebrough NJ, Farr AI, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75. https://doi.org/10.1016/S0021- 9258(19)52451-6 PMid:14907713. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Singh U, Sulochana S. Handbook of histological and histochemical techniques. Premier publishing house, Hyderabad; 1996.

Gopi KS, Reddy AG, Jyothi K, Kumar BA. Acetaminopheninduced hepato- and nephrotoxicity and amelioration by silymarin and terminalia chebula in rats. Toxicol Int. 2010; 17(2):64-6. https://doi.org/10.4103/0971-6580.72672 PMid:21170247 PMCid:PMC2997457. DOI: https://doi.org/10.4103/0971-6580.72672

Namratha ML, Lakshman M, Jeevanalatha M, Kumar BA. Assessment of vitamin C protective activity in glyphosateinduced hepatotoxicity in rats. Pakistan Veterinary Journal. 2021; 41(3). http://doi.org/10.29261/pakvetj/2021.021

Vanisthasree K, Reddy AG, Kalakumar B, Haritha C, Anilkumar B. Hepatotoxicity studies in the progeny of pregnant dams treated with methimazole, monocrotophos, and lead acetate. Toxicol Int. 2011; 18(1):67-9. https:// doi.org/10.4103/0971-6580.75868 PMid:21430926 PMCid: PMC3052590. DOI: https://doi.org/10.4103/0971-6580.75868

Abdel-Moneim AM, Al-Kahtani MA, El-Kersh MA, Al-Omair MA. Free radical-scavenging, anti-inflammatory/ anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver Damage. PLoS One. 2015; 10(12):e0144509. https://doi.org/10.1371/journal. pone.0144509 PMid:26659465 PMCid:PMC4676695. DOI: https://doi.org/10.1371/journal.pone.0144509

Shabbir M, Afsar T, Razak S, Almajwal A, Khan MR. Phytochemical analysis and evaluation of the hepatoprotective effect of Maytenus royleanus leaves extract against antituberculosis drug-induced liver injury in mice. Lipids Health Dis. 2020; 19(1):46. https://doi. org/10.1186/s12944-020-01231-9 PMid:32178678 PMCid: PMC7077109. DOI: https://doi.org/10.1186/s12944-020-01231-9

Maimonaparveen S, Madhuri D, Lakshman M, Anilkumar B. Anti-inflammatory potential of whole Pomegranate fruit juice (POM) against bleomycin induced lung injury in rats. J Anim Res. 2021; 11(06):989-93. https://doi. org/10.30954/2277-940X.06.2021.6 DOI: https://doi.org/10.30954/2277-940X.06.2021.6

Al-Olayan EM, El-Khadragy MF, Metwally DM, Abdel Moneim AE. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats. BMC Complement Altern Med. 2014; 14:164. https://doi.org/10.1186/1472-6882-14-164 PMid:24884677 PMCid:PMC4041339. DOI: https://doi.org/10.1186/1472-6882-14-164

Manvitha AV, Reddy BG. Kumar MA. Jeevanalatha, Priyanka G. Protective role of Ashwagandha and selenium against Chlorpyrifos (CPF) induced haemato biochemical and hepatic alterations in Wistar rats. Int J Curr Microbiol App Sci. 2019; 8(11):941-9. https://doi.org/10.20546/ ijcmas.2019.811.110. DOI: https://doi.org/10.20546/ijcmas.2019.811.110

Esposto S, Veneziani G, Taticchi A, Urbani S, Selvaggini R, Sordini B, Daidone L, Gironi G, Servili M. Chemical composition, antioxidant activity, and sensory characterization of commercial pomegranate juices. Antioxidants (Basel). 2021; 10(9):1381. https:// doi.org/10.3390/antiox10091381PMid:34573013 PMCid: PMC8471094. DOI: https://doi.org/10.3390/antiox10091381

Ali H, Jahan A, Samana S, Ali A, Ali S, Kabir N, Ali A, Ullah R, Mothana RA, Murtaza B.N., Kalim M. Hepatoprotective potential of pomegranate in curbing the incidence of acute liver injury by alleviating oxidative stress and inflammatory response. Front Pharmacol. 2021; 12:694607. https://doi. org/10.3389/fphar.2021.694607 PMid:34899284 PMCid: PMC8662995. DOI: https://doi.org/10.3389/fphar.2021.694607

Odewumi CO, Badisa VL, Le UT, Latinwo LM, Ikediobi CO, Badisa RB, Darling-Reed SF. Protective effects of N-acetylcysteine against cadmium-induced damage in cultured rat normal liver cells. Int J Mol Med. 2011; (2):243- 8. https://doi.org/10.3892/ijmm.2010.564. Epub 2010 Dec 1. PMID: 21125209; PMCID: PMC3322372.

Allawadhi P, Singh V, Khurana I, Rawat PS, Renushe AP, Khurana A, Navik U, Allwadhi S, Kumar Karlapudi S, Banothu AK, Bharani KK. Decorin as a possible strategy for the amelioration of COVID-19. Med Hypotheses. 2021; 152:110612. https://doi.org/10.1016/j.mehy.2021.110612 PMid:34098463 PMCid:PMC8133800. DOI: https://doi.org/10.1016/j.mehy.2021.110612

Renushe PA, Banothu KA, Bharani KK, Mekala L, Kumar MJ, Neeradi D, Durga Veera Hanuman D, Gadige A, Khurana A. Vincamine, an active constituent of Vinca rosea ameliorates experimentally induced acute lung injury in Swiss albino mice through modulation of Nrf-2/ NF-κB signaling cascade. Int Immunopharmacol. 2022; 108:108773. https://doi.org/10.1016/j.intimp.2022.108773 PMid:35453074. DOI: https://doi.org/10.1016/j.intimp.2022.108773

Namratha ML, Lakshman M, Jeevanalatha M, Kumar BA. Testicular toxicity induced by Glyphosate (GLP) and ameliorative effect of vitamin C in Wistar rats. 2021; 10(1):22-31. https://doi.org/10.5455/ijlr.20191012074803. DOI: https://doi.org/10.5455/ijlr.20191012074803

Anilkumar B, Reddy AG, Kalakumar B, Rani MU, Anjaneyulu Y, Raghunandan T, Reddy YR, Jyothi K, Gopi KS. Sero-biochemical studies in sheep fed with Bt cotton plants. Toxicol Int. 2010; 17(2):99-101. https://doi. org/10.4103/0971-6580.72680 PMid:21170255 PMCid: PMC2997465. DOI: https://doi.org/10.4103/0971-6580.72680

Kurutas EB. The importance of antioxidants which play a role in cellular response against oxidative/nitrosative stress: Current state. Nutr J. 2016; 15(1):71. https:// doi.org/10.1186/s12937-016-0186-5 PMid:27456681 PMCid:PMC4960740. DOI: https://doi.org/10.1186/s12937-016-0186-5

Sahu N, Mishra G, Chandra HK, Nirala SK, Bhadauria M. Naringenin mitigates antituberculosis drugs induced hepatic and renal injury in rats. J Tradit Complement Med. 2019; 10(1):26-35. https://doi.org/10.1016/j.jtcme. 2019.01.001 PMid:31956555 PMCid:PMC6957811. DOI: https://doi.org/10.1016/j.jtcme.2019.01.001

Priyanka G, Kumar BA, Lakshman M, Manvitha V, Kumar BK. Adaptogenic and immunomodulatory activity of Ashwagandha root extract: An experimental study in an equine model. Front Vet Sci. 2020; 7:541112. https://doi. org/10.3389/fvets.2020.541112 PMid:33134345 PMCid: PMC7552885. DOI: https://doi.org/10.3389/fvets.2020.541112

Feng J, Chen K, Xia Y, Wu L, Li J, Li S, Wang W, Lu X, Liu T, Guo C. Salidroside ameliorates autophagy and activation of hepatic stellate cells in mice via NF-κB and TGF-β1/ Smad3 pathways. Drug Des Devel Ther. 2018; 12:1837-53. https://doi.org/10.2147/DDDT.S162950 PMid:29970958 PMCid:PMC6021006. DOI: https://doi.org/10.2147/DDDT.S162950

Jung YK, Yim HJ. Reversal of liver cirrhosis: Current evidence and expectations. Korean J Intern Med. 2017; 32(2):213-28. https://doi.org/10.3904/kjim.2016.268 PMid: 28171717 PMCid:PMC5339475. DOI: https://doi.org/10.3904/kjim.2016.268

Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin Liver Dis. 2008; 12(4):825-52, ix. https://doi.org/10.1016/j.cld.2008.07.013 PMid:18984469. DOI: https://doi.org/10.1016/j.cld.2008.07.013

Ahmad A, Ahmad R. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J Gastroenterol. 2012; 18(3):155-67. https://doi. org/10.4103/1319-3767.96445 PMid:22626794 PMCid: PMC3371417. DOI: https://doi.org/10.4103/1319-3767.96445

Danesi F, Ferguson LR. Could Pomegranate Juice help in the control of inflammatory diseases? Nutrients. 2017; 9(9): 958. https://doi.org/10.3390/nu9090958 PMid:28867799 PMCid:PMC5622718. DOI: https://doi.org/10.3390/nu9090958