Mixture Design-driven Statistical Optimization and Method Validation in HPTLC: Targeting Rutin, Quercetin, and Gallic Acid

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat ,IN
  • C. K. Pithawalla Institute of Pharmaceutical Science and Research, Surat - 395007, Gujarat ,IN
  • C. K. Pithawalla Institute of Pharmaceutical Science and Research, Surat - 395007, Gujarat ,IN
  • C. K. Pithawalla Institute of Pharmaceutical Science and Research, Surat - 395007, Gujarat ,IN
  • C. K. Pithawalla Institute of Pharmaceutical Science and Research, Surat - 395007, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2024/35980

Keywords:

Adansonia digitata, Gallic Acid, Grewia asiatica, HPTLC, Quercetin, Rutin

Abstract

Rutin (RT), Quercetin (QT), and Gallic Acid (GA) are recognized for their potent antioxidant and anticancer properties, prevalent across numerous plant species. The precise quantification of RT, QT, and GA is pivotal for evaluating the therapeutic potential of plant-based substances. In response, a new, straightforward, cost-effective, and reliable method using High-Performance Thin-Layer Chromatography (HPTLC) has been developed and validated for the quantification of these compounds. The mobile phase optimization employed a mixture design approach, achieving chromatographic separation with a mobile phase mixture of toluene, ethyl acetate, menthol, and formic acid at specific ratios (3.56:3.70:0.94:1.80 v/v/v/v/v/v/v/v). Silica gel 60 F254 HPTLC plates were utilized for the analysis. The retention factors (Rf) observed for RT, GA, and QT were 0.21, 0.58, and 0.74, respectively. This method demonstrated a robust linear relationship for concentrations ranging from 400 to 2000 ng per band, with correlation coefficients (R2) of 0.9921 for RT, 0.9936 for QT, and 0.9912 for GA. The Limits of Detection (LOD) and quantification (LOQ) were established at 100.84, 102.38, and 84.54 ng per band for LOD, and 305.58, 310.25, and 256.18 ng per band for LOQ, respectively, for RT, QT, and GA. This validated HPTLC method developed through a Design of Experiment (DoE) approach was successfully employed for the quantification of GA, QT, and RT from the fruits of Adansonia digitata and leaves of Grewia asiatica ethanolic extracts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-01

How to Cite

Jariwala, J. K., Parmar, G. R., Ramani, V. D., Vaishnav, D. J., Solanki, N. I., & Shah, D. P. (2024). Mixture Design-driven Statistical Optimization and Method Validation in HPTLC: Targeting Rutin, Quercetin, and Gallic Acid. Journal of Natural Remedies, 24(4), 885–896. https://doi.org/10.18311/jnr/2024/35980
Received 2023-12-25
Accepted 2024-02-27
Published 2024-04-01

 

References

Garcia S. Pandemics and traditional plant-based remedies. A historical-botanical review in the era of COVID-19. Front Plant Sci. 2020; p. 1353. https://doi.org/10.3389/fpls.2020.571042 PMid:32983220 PMCid: PMC7485289

Dhami N, Mishra AD. Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? J Herb Med. 2015; 5(2):118-27. https://doi.org/10.1016/j.hermed.2015.04.002

Shukla S, Saraf S, Saraf S. Approaches towards standardization and quality assessment of herbals. J Res Educ Indian Med. 2009; 15(1):25-32.

Beressa A, Wariyo A, Chala G, Tefera Y. Analytical method development for quality control and standardization of medicinal plants: A critical review. J Herbal Sci. 2021; 10(1):9-20.

Gunjal Sanket B, Dighe P. Analysis of herbal drugs by HPTLC: A review. Asian J Pharm Res Dev. 2022; 10(2):125-8. https://doi.org/10.22270/ajprd.v10i2.1056

Kumari R, Kotecha M. A review on the standardization of herbal medicines. Int J Pharma Sci Res. 2016; 7(2):97-106.

Koval'Skii I, Krasnyuk I, Krasnyuk I, Nikulina O, Belyatskaya A, Kharitonov YY, et al. Mechanisms of rutin pharmacological action. Pharm Chem J. 2014; 48:73-6. https://doi.org/10.1007/s11094-014-1050-6

Yang J, Guo J, Yuan J. In vitro antioxidant properties of rutin. LWT-Food Sci and Technol. 2008; 41(6):1060-6. https://doi.org/10.1016/j.lwt.2007.06.010

Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid Med Cell Longev. 2018; 2018:6241017. https://doi.org/10.1155/2018/6241017 PMid:30050657 PMCid: PMC6040293

Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res. 2021; 35(5):2500-13. https://doi.org/10.1002/ptr.6977 PMid:33295678

Farha AK, Gan R-Y, Li H-B, Wu D-T, Atanasov AG, Gul K, et al. The anticancer potential of the dietary polyphenol rutin: Status, challenges, and perspectives. Crit Rev Food Sci Nutr. 2022; 62(3):832-59. https://doi.org/10.1080/10408398.2020.1829541 PMid:33054344

Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evidence-based complementary and alternative medicine. 2021; 2021:9913179. https://doi.org/10.1155/2021/9913179 PMid:34484407 PMCid: PMC8416379

Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018; 32(11):2109-30. https://doi.org/10.1002/ptr.6155 PMid:30039547

Baghel SS, Shrivastava N, Baghel RS, Agrawal P, Rajput S. A review of quercetin: antioxidant and anticancer properties. World J Pharm Pharmaceutical Sci. 2012; 1(1):146-60.

Massi A, Bortolini O, Ragno D, Bernardi T, Sacchetti G, Tacchini M, et al. Research progress in the modification of quercetin leading to anticancer agents. Molecules. 2017; 22(8): 1270. https://doi.org/10.3390/molecules22081270 PMid:28758919 PMCid: PMC6152094

Tang S-M, Deng X-T, Zhou J, Li Q-P, Ge X-X, Miao L. Pharmacological basis and new insights of quercetin action with respect to its anti-cancer effects. Biomed Pharmacother. 2020; 121:109604. https://doi.org/10.1016/j.biopha.2019.109604 PMid:31733570

Yang D, Wang T, Long M, Li P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020; 2020:8825387. https://doi.org/10.1155/2020/8825387 PMid:33488935 PMCid: PMC7790550

Zhang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y, et al. Antioxidant properties of quercetin. Oxygen transport to tissue XXXII. 2011: Springer. https://doi.org/10.1007/978-1-4419-7756-4_38 PMid:21445799

Xu D, Hu M-J, Wang Y-Q, Cui Y-L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019; 24(6):1123. https://doi.org/10.3390/molecules24061123 PMid:30901869 PMCid: PMC6470739

Badhani B, Sharma N, Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances. 2015; 5(35):27540-57. https://doi.org/10.1039/C5RA01911G

Yen G-C, Duh P-D, Tsai H-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002; 79(3):307-13. https://doi.org/10.1016/S0308-8146(02)00145-0

Aruoma OI, Murcia A, Butler J, Halliwell B. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem. 1993; 41(11):1880-5. https://doi.org/10.1021/jf00035a014

Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019; 22(3):225.

Subramanian A, John A, Vellayappan M, Balaji A, Jaganathan S, Supriyanto E, et al. Gallic acid: prospects and molecular mechanisms of its anticancer activity. RSC Advances. 2015; 5(45):35608-21. https://doi.org/10.1039/C5RA02727F

Jiang Y, Pei J, Zheng Y, Miao Y-j, Duan B-z, Huang L-f. Gallic acid: A potential anti-cancer agent. Chin J Integr Med. 2022; 28(7):661-71. https://doi.org/10.1007/s11655-021-3345-2 PMid:34755289

ICH. Validation of analytical procedures Q2 (R2). Geneva, Switzerland 2022.

Kumar A, Lakshman K, Jayaveera K, Tripathi SM, Satish K. Estimation of gallic acid, rutin and quercetin in Terminalia chebula by HPTLC. Jordan J Pharm Sci. 2010; 3(1):63-8.

Mehesare SS, Waghmare SP, Thorat MG, Hajore SW, Hatzade RI, Ingawale MV. Quantification of gallic acid, rutin and quercetin in the hydro-ethanolic extract of Holarrhena antidysenterica using High-Performance Thin Layer Chromatography (HPTLC). Acta Scientific Veterinary Sciences (ISSN: 2582-3183). 2022; 4(4). https://doi.org/10.31080/ASVS.2022.04.0350

Hussain J, Bassal M, Sarhan H, Aga MIH. Qualitative and quantitative comparison of rutin, quercetin and gallic acid concentrations in Syrian Capparis spinosa. L leaves. J Pharmacogn Phytochem. 2017; 6(4):407-15.

Biswas S, Harwansh RK, Kar A, Mukherjee PK. Validated high-performance thin-layer chromatographic method for the simultaneous determination of quercetin, rutin, and gallic acid in Amaranthus tricolor L. Journal of Planar Chromatogr. 2019; 32(2):121-6. https://doi.org/10.1556/1006.2019.32.2.7

Ramani VD, Jani GK, Sen AK, Sailor GU, Sutariya VB. Development, and validation of RP-HPLC method for pitavastatin calcium in bulk and formulation using experimental design. J Appl Pharm Sci. 2019; 9(10):075-83. https://doi.org/10.7324/JAPS.2019.91010