Exploring Nephroprotective Properties of Wedelia chinensis: In Vitro, In Silico, and In Vivo Investigations

Jump To References Section

Authors

  • JKKMMRF's Annai JKK Sampoorani Ammal College of Pharmacy Ethirmedu, The Tamil Nadu Dr. MGR University, Namakkal – 638183, Tamil Nadu ,IN
  • Department of Pharmaceutical Chemistry, JKKMMRF’s Annai JKK Sampoorani Ammal College of Pharmacy Ethirmedu, The Tamil Nadu Dr. MGR University, Namakkal – 638183, Tamil Nadu ,IN
  • Department of Pharmaceutics, Arulmigmu Kalasalingam, College of Pharmacy, The Tamil Nadu Dr. MGR University, Virudhunagar – 626126, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jnr/2024/35412

Keywords:

Gentamicin-induced Nephrotoxicity, HEK-293, In Silico, In Vitro, Nephroprotective Activity, Wedelia chinensis

Abstract

The purpose of this research work is to investigate the nephroprotective efficacy of Wedelia chinensis leaf extracts against gentamicin-induced nephrotoxicity for in vitro, in silico, and in vivo techniques. The extracts of Wedelia chinensis leaf rich in flavonoids were subjected to an in silico method for ligands and target proteins. The results of the in vitro antioxidant study of extracts were tested for cytoprotective MTT assay and anti-inflammatory efficacy by protein denaturation assay using Human Embryonic Kidney cells (HEK293). The in vivo nephroprotective potential of the extract was evaluated with the two doses of 250mg/kg and 500mg/kg body weight in gentamicin nephrotoxicity in rats. The biochemical parameters observed for changes in the histopathology of the kidney. While comparing with other extracts of Wedelia chinensis Hydroalcoholic Extract (WCHAE) shows great binding affinity with bonding interactions of flavonoids and phenolics-based ligands observed with the target proteins that provided early information. The in vitro cell lines study revealed no cytotoxicity and better anti-inflammatory effect on HEK293 cells with cytoprotective and nephroprotective efficacy of WCHAE. The in vivo nephroprotective activity improved at a dose of 500mg/kg of WCHAE than Wedelia chinensis Ethanolic Extract (WCEE). The histopathological findings revealed the improvement in gentamicin-induced renal toxicity by the WCHAE orally treated group compared to normal and negative control groups. These results of WCHAE are more satisfactorily effective than WCEE with marked in vitro antioxidant, and cytoprotective effects in HEK293 cells. In in silico docking, it shows good interaction scores of ligands for target proteins like (kidney injury molecule) KIM-1 and Neutrophil Gelatinase-Associated Lipocalin (NAGAL) that helps to correlate nephroprotective potential benefits of antioxidants in plant extracts against gentamicin induced nephrotoxicity in rats.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-04-01

How to Cite

Gautam, D. T., Venkatachalam, T., & Senthilkumar, S. R. (2024). Exploring Nephroprotective Properties of <i>Wedelia chinensis: In Vitro, In Silico,</i> and <i>In Vivo</i> Investigations. Journal of Natural Remedies, 24(4), 817–837. https://doi.org/10.18311/jnr/2024/35412
Received 2023-10-23
Accepted 2024-02-28
Published 2024-04-01

 

References

Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022, Vol. 12, Kidney Int Suppl. Elsevier B.V. 2022. p. 7-11. https://doi.org/10.1016/j.kisu.2021.11.003 PMid:35529086 PMCid:PMC9073222

Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018; 96(6):414-22C. https://doi.org/10.2471/BLT.17.206441 PMid:29904224 PMCid:PMC5996218

Kumar V, Yadav AK, Sethi J, Ghosh A, Sahay M, Prasad N, et al. The Indian Chronic Kidney Disease (ICKD) study: Baseline characteristics. Clin Kidney J. 2022; 15(1):60-9. https://doi.org/10.1093/ckj/sfab149 PMid:35035937 PMCid:PMC8757418

Josiah SS, Crown OO, Akinmoladun AC, Olaleye MT. Renoprotective property of the flavonoid-rich extract of Kigelia africana fruits on gentamicin-induced nephrotoxicity in rats. Comp Clin Path. 2020; 29(4):815-28. https://doi.org/10.1007/s00580-020-03140-w

Saleem M, Javed F, Asif M, Baig MK, Arif M. HPLC analysis and in vivo renoprotective evaluation of hydroalcoholic extract of Cucumis melo seeds in gentamicin-induced renal damage. Medicina. 2019; 55(4). https://doi.org/10.3390/medicina55040107 PMid:30991760 PMCid:PMC6524020

Idacahyati K, Nurdianti L, Husni SS, Gustaman F, Wulandari WT. The nephroprotective activity of ethanol extract of kirinyuh (Chromolaena odorata L) in gentamicin induced nephrotoxicity in wistar rats. Int J Appl Pharm. 2021; 13(Special Issue 3). https://doi.org/10.22159/ijap.2021.v13s3.11

Hosseinzadeh A, Goudarzi M, Karimi MY, Khorsandi L, Mehrzadi S, Mombeini MA. Zingerone ameliorates gentamicin-induced nephrotoxicity in rats. Comp Clin Path. 2020; 29(5):971-80. https://doi.org/10.1007/s00580-020-03129-5

Govindappa PK, Gautam V, Tripathi SM, Sahni YP, Raghavendra HLS. Effect of Withania somnifera on gentamicin induced renal lesions in rats. Rev Bras Farmacogn. 2019; 29(2):234-40. https://doi.org/10.1016/j.bjp.2018.12.005

Nyarko RA, Larbie C, Anning AK, Baidoo PK, Emikpe BO, Oyagbemi AA, et al. Griffonia simplicifolia (DC.) Baill. attenuates gentamicin and cisplatin-induced nephrotoxicty in rats. Comp Clin Path. 2019; 28(5). https://doi.org/10.1007/s00580-019-02934-x

Terada Y, Doi K, Wada T. Acute kidney injury and regenerative medicine. Acute Kidney Injury and Regenerative Medicine; 2020. p. 1-396. https://doi.org/10.1007/978-981-15-1108-0

Abdou RM, El-Maadawy WH, Hassan M, El-Dine RS, Aboushousha T, El-Tanbouly ND, et al. Nephroprotective activity of Aframomum melegueta seeds extract against diclofenac-induced acute kidney injury: A mechanistic study. J Ethnopharmacol. 2021; 273. https://doi.org/10.1016/j.jep.2021.113939 PMid:33610709

George B, Joy MS, Aleksunes LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med. 2018; 243(3):272-82. https://doi.org/10.1177/1535370217745302 PMid:29231123 PMCid:PMC5813872

Irvine AR, van Berlo D, Shekhani R, Masereeuw R. A systematic review of in vitro models of drug-induced kidney injury. Curr Opin Toxicol. 2021; 27(June):18-26. https://doi.org/10.1016/j.cotox.2021.06.001

Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-Chip Technology for DrugInduced Nephrotoxicity Screening. Vol. 34, Trends Biotechnol. Elsevier Ltd; 2016. p. 156-70. https://doi.org/10.1016/j.tibtech.2015.11.001 PMid:26708346

Downes KJ, Hayes M, Fitzgerald JC, Pais GM, Liu J, Zane NR, et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother. 2020; 75(1):1-13. https://doi.org/10.1093/jac/dkz325 PMid:31369087 PMCid:PMC6910165

Al-Kuraishy H, Al-Gareeb A, Al-Nami M. Irbesartan attenuates gentamicin-induced nephrotoxicity in rats through modulation of oxidative stress and endogenous antioxidant capacity. Int J Prev Med. 2020; 11(1). https://doi.org/10.4103/JLP.JLP_136_18 PMid:31579224 PMCid: PMC6771317

Jain A, Nahata A, Singhai AK. Effect of Tephrosia purpurea (L.) pers. leaves on gentamicin-induced nephrotoxicity in rats. Sci Pharm. 2013; 81(4):1071-87. https://doi.org/10.3797/scipharm.1302-09 PMid:24482774 PMCid:PMC3867241

Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Vol. 79, Kidney Int. Nature Publishing Group; 2011. p. 33-45. https://doi.org/10.1038/ki.2010.337 PMid:20861826

Abdelrahman RS. Protective effect of apocynin against gentamicin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2018; 37(1):27-37. https://doi.org/10.1177/0960327116689716 PMid:28116922

Israa M, Mokhtar Y, Thanaa S, Osama M. The protective role of tannic acid against possible hepato-nephrotoxicity induced by silver nanoparticles on male rats. Sanamed. 2019; 14(2):131-45. https://doi.org/10.24125/sanamed.v14i2.336

Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in treatment of chronic kidney disease. Molecules. 2022; 27(7):1-23. https://doi.org/10.3390/molecules27072365 PMid:35408760 PMCid:PMC9000519

Tolouian R, Tolouian A, Dastan F, Farhangi V, Peymani P, Saeifar S, et al. Antioxidants and cisplatin nephrotoxicity: An updated review on current knowledge. J Nephropharmacol. 2023; 12(1):1-5. https://doi.org/10.34172/npj.2022.10556

Kiliś-Pstrusińska K, Wiela-Hojeńska A. Nephrotoxicity of herbal products in europe - A review of an underestimated problem of nephrotoxicity of herbal products. Int J Mol Sci. 2021; 22(8). https://doi.org/10.3390/ijms22084132 PMid:33923686 PMCid:PMC8074082

Fontecha-Barriuso M, Martín-Sanchez D, Martinez-Moreno JM, Cardenas-Villacres D, Carrasco S, Sanchez-Niño MD, et al. Molecular pathways driving omeprazole nephrotoxicity. Redox Biol. 2020; 32(February). Available from: https://doi.org/10.1016/j.redox.2020.101464 PMid: 32092686 PMCid:PMC7038587

Zygler A, Słomińska M, Namieśnik J. Soxhlet extraction and new developments such as soxtec. Comprehensive Sampling and Sample Preparation Analytical Techniques for Scientists. 2012; 2:65-82. https://doi.org/10.1016/B978-0-12-381373-2.00037-5

de Castro MDL, Jiménez JR, Ayuso LEG. Environmental Applications. Soxhlet Extraction. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2013; (June):1-8. https://doi.org/10.1016/B978-0-12-409547-2.04734-X PMCid:PMC3896622

Mukherjee PK. Extraction and other downstream procedures for evaluation of herbal drugs. Quality Control and Evaluation of Herbal Drugs; 2019. p. 195-236. https://doi.org/10.1016/B978-0-12-813374-3.00006-5

Prenzler PD, Ryan D, Robards K, editors. Handbook of Antioxidant Methodology: Approaches to Activity Determination. Royal Society of Chemistry; 2021 Oct 12

Prakash J, Geetha KN, Jeyaprakash K, Nagaraja YP. A preliminary pharmacognostical study on leaves and flowers of Michelia champaca L. Magnoliaceae. J Appl Nat Sci. 2011; 3(2):228-31. https://doi.org/10.31018/jans.v3i2.184

Karthikeyan V, Balakrishnan BR, Senniappan P, Janarthanan L, Anandharaj G, Jaykar B. Pharmacognostical, phyto-physicochemical profile of the leaves of michelia champaca linn. Int J Pharm Pharm Res. 2016;7(1):331-44.

Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total Phenolics and flavonoids of different solvent fractions of Monotheca Buxifolia fruit. Osong public health and research perspectives. 2013; 4(5):246-54. https://doi.org/10.1016/j.phrp.2013.09.003 PMid:24298440 PMCid:PMC3845226

Adebiyi OE, Olayemi FO, Ning-Hua T, Guang-Zhi Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef University Journal of Basic and Applied Sciences. 2017; 6(1):10-4. https://doi.org/10.1016/j.bjbas.2016.12.003

Robert B, Brown EB. NO Analysis of the co-dispersion structure of the health-related indicators of the home-based high-income people. 2004; 1:1-4.

Ali BM, Boothapandi M, Sultan Nasar AS. Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: Data supporting antioxidant activity of radical dendrimers. Data in brief. 2020; 28. https://doi.org/10.1016/j.dib.2019.104972 PMid:31890810 PMCid:PMC6933143

Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181(4617):1199-200. https://doi.org/10.1038/1811199a0

Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6):307-15. https://doi.org/10.5264/eiyogakuzashi.44.307

Vasyliev GS, Vorobyova VI, Linyucheva O V. Evaluation of reducing ability and antioxidant activity of fruit pomace extracts by spectrophotometric and electrochemical methods. J Anal Methods Chem. 2020; 2020. https://doi.org/10.1155/2020/8869436 PMid:33489417 PMCid:PMC7787820

Land ET. Free radicals in biology and medicine. Int J Radiat Biol. 1990; 58(4):725-5. https://doi.org/10.1080/09553009014552071

Banu HR, Nagarajan N. Evaluation of in vitro antioxidant activity of a medicinal herb, Wedelia chinensis (Osbeck) merrill. Asian J Pharm Clin Res. 2018; 11(10). https://doi.org/10.22159/ajpcr.2018.v11i10.25008

Joshi T, Juyal V. Evaluation of hydroxyl radical scavenging activity of ethanolic extract of Thymus Serpyllum. Int J Pharm Sci Res. 2018; 9(4):1625-27.

Garratt DC. The quantitative analysis of drugs. Springer Science and Business Media. 2012 Dec 6.

Wu G, Cai Y, Wei H, Wei A, Xiong C, Fu W, et al. Nephroprotective activity of Macrothelypteris oligophlebia rhizomes ethanol extract. Pharm Biol. 2012; 50(6). https://doi.org/10.3109/13880209.2011.632776 PMid:22077104

Amalia R, Aulifa DL, Zain DN, Pebiansyah A, Levita J. The cytotoxicity and nephroprotective activity of the ethanol extracts of Angelica keiskei Koidzumi stems and leaves against the NAPQI-Induced Human Embryonic Kidney (HEK293) cell line. Evidence-Based Evidence-Based Complementary and Alternative Medicine. 2021; 2021. https://doi.org/10.1155/2021/6458265 PMid:34858509 PMCid:PMC8632470

Movaliya VR. In vitro nephroprotective activity of selected herbal plants on vero cell line. Int J Pharmacogn Chinese Med. 2020; 4(1):1-8. https://doi.org/10.23880/ipcm-16000198

Altundag EM, Gençalp D, Özbilenler C, Toprak K, Kerküklü N. In vitro antioxidant, anti-inflammatory and anti-cancer activities of methanolic extract of Asparagus horridus grows in North Cyprus. Turk J Biochem. 2020; 45(4):365-72. https://doi.org/10.1515/tjb-2019-0325

Xu L, Lin G, Yu Q, Li Q, Mai L, Cheng J, et al. Anti-hyperuricemic and nephroprotective effects of dihydroberberine in potassium oxonate- and hypoxanthine-induced hyperuricemic mice. Front Pharmacol. 2021; 12. https://doi.org/10.3389/fphar.2021.645879 PMid:33959014 PMCid:PMC8093860

Gopinath P, Kathiravan MK. QSAR and docking studies on Triazole Benzene Sulfonamides with human Carbonic anhydrase IX inhibitory activity. J Chemom. 2019; 33(12):1-16. https://doi.org/10.1002/cem.3189

Salake AB, Chothe AS, Nilewar SS, Khilare M, Meshram RS, Pandey AA, et al. Design, synthesis, and evaluations of antifungal activity of novel phenyl (2H-tetrazol-5-yl) methanamine derivatives. J Biol Chem. 2014; 7(1):29-35. https://doi.org/10.1007/s12154-013-0103-8 PMid:24432136 PMCid:PMC3877410

Mittal K, Gupta V, Aggarwal H, Patki V. Core concepts in acute kidney injury. J Pediatr Crit Care. 2018; 5(5):127. https://doi.org/10.21304/2018.0505.00436

Pharmacology E, Mageshwaran B, Deepak L, Shewade G, Marshall G. Introduction to basics of pharmacology and toxicology, Vol. 3, Introduction to Basics of Pharmacology and Toxicology; 2021.

OECD/OCDE 423. OECD Guideline for testing of chemicals acute oral toxicity-Acute Toxic Class Method Introduction; 2001.

Bienvenu KF, Cyril DG, Florian YB, Felix YH, Timothée OA. Evaluation of nephroprotective properties of aqueous and hydroethanolic extracts of Crinum scillifolium against gentamicin induced renal dysfunction in the albino rats. J Adv Med Med Res. 2019; 1-10. https://doi.org/10.9734/jammr/2019/v30i130160

Al-Yousef HM, Alqahtani AS, Ghani AEA, El-Toumy SA, El-Dougdoug WIA, Hassan WHB, et al. Nephroprotective and antioxidant activities of ethyl acetate fraction of Euphorbia geniculata Ortega family Euphorbiaceae. Arab J Chem. 2020; 13(11). https://doi.org/10.1016/j.arabjc.2020.09.015

Uzunhisarcikli M, Apaydin FG, Bas H, Kalender Y. The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicol Res (Camb). 2023;12(3):493-502. https://doi.org/10.1093/toxres/tfad034 PMid:37397921 PMCid:PMC10311137

Tu H, Ma D, Luo Y, Tang S, Li Y, Chen G, et al. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioeng. 2021; 12(1):6538-58. https://doi.org/10.1080/21655979.2021.1973877 PMid:34528858 PMCid:PMC8806539

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics. 1984; 21(2):130-2.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1):70-7. https://doi.org/10.1016/0003-9861(59)90090-6 PMid:13650640

Anderson ME, Meister A. Dynamic state of glutathione in blood plasma. J Biol Chem. 1980; 255(20):9530-3. https://doi.org/10.1016/S0021-9258(18)43421-7 PMid:7430084

Anwer T, Alshahrani S, Somaili AMH, Khubrani AH, Ahmed RA, Jali AM, et al. Nephroprotective effect of diosmin against cisplatin-induced kidney damage by modulating IL-1β, IL-6, TNFα and renal oxidative damage. Molecules. 2023; 28(3):1-11. https://doi.org/10.3390/molecules28031302 PMid:36770968 PMCid:PMC9920922

Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972; 47(2):389-94. https://doi.org/10.1016/0003-2697(72)90132-7 PMid:4556490

Antonio SGW, Silva-Correa Carmen R, Villarreal-La Torre Víctor E, Cruzado-Razco José L, Calderón-Peña Abhel A, Aspajo-Villalaz Cinthya L, et al. Hepatoprotective and nephroprotective activity of artemisia absinthium l. On diclofenac-induced toxicity in rats. Pharmacogn J. 2020; 12(5). https://doi.org/10.5530/pj.2020.12.146

Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S Afr J Bot. 2019; 120:261-7. https://doi.org/10.1016/j.sajb.2018.07.003

Ruwali P, Adhikari M, Sharma S. Phytochemical and antioxidant properties of various extracts of Michelia champaca leaves. Int J Pharm Pharm Sci. 2019; 11(5). https://doi.org/10.22159/ijpps.2019v11i5.31745

Bari MW, Islam A, Islam MM, Sultana MJ, Afroz R, Khan MMR, et al. Determination of in vitro antioxidant activity and in vivo antineoplastic effects against Ehrlich ascites carcinoma of methanolic extract of Sphagneticola calendulacea (L.) Pruski. Heliyon. 2021; 7(6). https://doi.org/10.1016/j.heliyon.2021.e07228 PMid:34189294 PMCid:PMC8215174

Neelima S, Reddy PD, Bannoth CSK. Nephroprotective activity of Annona Squamosa leaves against paracetamol-induced nephrotoxicity in rats: In vitro and in vivo experiments. Futur J Pharm Sci. 2020; 6(1). https://doi.org/10.1186/s43094-020-00149-4

Zhang Z, Shang Y, Li S, Chen Z, Xia J, Tian Y, et al. Molecular docking revealed the potential anti-oxidative stress mechanism of the walnut polypeptide on HT22 cells. Foods. 2023; 12(7). https://doi.org/10.3390/foods12071554 PMid:37048374 PMCid:PMC10093838

Kim EJ, Han JH, Koo HM, Doh FM, Kim CH, Ko KI, et al. Renal histopathology. Nephrology Dialysis Transplantation. 2013; 28(suppl 1):i198-201.

Udawatte NS, Kang SW, Wang Y, Arumugam TV, Seneviratne CJ. Predictive nephrotoxicity profiling of a novel antifungal small molecule in comparison to Amphotericin B and Voriconazole. Front Pharmacol. 2020; 11. https://doi.org/10.3389/fphar.2020.00511 PMid:323 90849 PMCid:PMC7193989

Hadi NA, Saleh NA. Effect of extracted flavonoids and tannin from sumac and myrtle, against gentamicin-induced nephrotoxicity in local Iraqi rabbits effect of extracted flavonoids and tannin from sumac and myrtle, against gentamicin-induced nephrotoxicity in local iraqi. 1st Samarra International Conference for Pure and Applied Sciences (SICPS2021): SICPS2021, 2021 Mar 23-24, Samarra, Iraq; 2022. https://doi.org/10.1063/5.0121236

Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, et al. Mitochondrial damage and mitochondria-targeted antioxidant protection in LPS-induced acute kidney injury. Antioxidants. 2019; 8(6). https://doi.org/10.3390/antiox8060176 PMid:31197113 PMCid:PMC6617298

Pai PG, Nawarathna SC, Kulkarni A, Habeeba U, Reddy CS, Teerthanath S, et al. Nephroprotective effect of ursolic acid in a murine model of gentamicin-induced Renal damage. ISRN Pharmacology. 2012; 2012:1-6. https://doi.org/10.5402/2012/410902 PMid:22811930 PMCid:PMC3394390

Bencheikh N, Ouahhoud S, Cordero MAW, Alotaibi A, Fakchich J, Ouassou H, et al. Nephroprotective and antioxidant effects of flavonoid-rich extract of Thymelaea microphylla Coss. et dur aerial part. Appl Sci. 2022; 12(18). https://doi.org/10.3390/app12189272

Iqbal SM, Hussain L, Hussain M, Akram H, Asif M, Jamshed A, et al. Nephroprotective potential of a standardized extract of Bambusa arundinacea: In vitro and in vivo studies. ACS Omega. 2022; 7(21):18159-67. https://doi.org/10.1021/acsomega.2c02047 PMid:35664584 PMCid:PMC9161425

Mestry SN, Gawali NB, Pai SA, Gursahani MS, Dhodi JB, Munshi R, et al. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress. J Ayurveda Integr Med. 2020; 11(1):16-23. https://doi.org/10.1016/j.jaim.2017.09.006 PMid:29555255 PMCid:PMC7125389

Baykara M, Silici S, Özçelik M, Güler O, Erdoğan N, Bilgen M. In vivo nephroprotective efficacy of propolis against contrast-induced nephropathy. Diagn Interv Radiol. 2015; 21(4):317-21. https://doi.org/10.5152/dir.2015.14075 PMid: 26027766 PMCid:PMC4498426

Arab HH, Eid AH, Gad AM, Yahia R, Mahmoud AM, Kabel AM. Inhibition of oxidative stress and apoptosis by camel milk mitigates cyclosporine-induced nephrotoxicity: Targeting Nrf2/HO-1 and AKT/eNOS/NO pathways. Food Science and Nutrition. 2021; 9(6):3177-90. https://doi.org/10.1002/fsn3.2277 PMid:34136182 PMCid:PMC8194908

Burki S, Burki ZG, Asghar MA, Ali I, Zafar S. Phytochemical, acute toxicity and renal protective appraisal of Ajuga parviflora hydromethanolic leaf extract against CCl4 induced renal injury in rats. BMC Complement Med Ther. 2021; 21(1). https://doi.org/10.1186/s12906-021-03360-9 PMid:34253216 PMCid:PMC8276434