Profiling of Immunomodulatory Flavonois From Leafy Vegetables Available in West Bengal - An Overview of Their Mechanism of Action

Jump To References Section

Authors

  • Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata – 700114, West Bengal ,IN
  • Pharmaceutical Chemistry, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata – 700114, West Bengal ,IN

DOI:

https://doi.org/10.18311/jnr/2023/33026

Keywords:

Flavanoids, Immunomodulatory, Leafy Vegetables

Abstract

In recent years, the increasing incidence of autoimmune diseases such as cancer and viral diseases including COVID-19 poses a serious problem in terms of prevention, diagnosis, prognosis and therapy. Various kinds of active immunomodulatory ingredients are one of the main components of the continuous breakthroughs of pharmaceuticals until recent research. Flavonoids are significant phytochemicals that are thought to be principally responsible for plants’ immunomodulation function. These phytochemicals can also serve as a model for the creation of safe and effective immunomodulators as potential treatments for the prevention and treatment of various immune-related disorders. Leafy vegetables give stronger support for human health due to their overlapping nutritional and therapeutic advantages. The goal of the present review was to profile the immunomodulatory flavonoids from the leafy vegetables of West Bengal to support the prevalent immune-related disorders worldwide. The majority of the leafy vegetables with significant immunomodulatory action are outlined, along with their potential mechanisms and quantity of the response flavonoids. The present work will pick the interest of researchers and promote additional studies on these leafy vegetables-based immunomodulation agents as prospective therapies for the treatment the various immune-suppressed disorders in future days.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-31

How to Cite

Adhikari, T., & Saha, P. (2023). Profiling of Immunomodulatory Flavonois From Leafy Vegetables Available in West Bengal - An Overview of Their Mechanism of Action. Journal of Natural Remedies, 23(3), 747–761. https://doi.org/10.18311/jnr/2023/33026

Issue

Section

Review Articles
Received 2023-02-15
Accepted 2023-06-28
Published 2023-08-31

 

References

Hosseinzade A, Sadeghi O, Biregani AN, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol. 2019; 10:1–12. https://doi.org/10.3389/fimmu.2019.00051 PMid:30766532 PMCid:PMC6366148 DOI: https://doi.org/10.3389/fimmu.2019.00051

Grigore A. Plant phenolic compounds as immunomodulatory agents. Phenolic Compd - Biol Act. 2017. https://doi.org/10.5772/66112 DOI: https://doi.org/10.5772/66112

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3):1–14. https://doi.org/10.3390/nu8030167 PMid:26999194 PMCid:PMC4808895 DOI: https://doi.org/10.3390/nu8030167

Baranowski M, Enns J, Blewett H, Yakandawala U, Zahradka P, Taylor CG. Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T - cell infiltration in obese, insulin-resistant rats. Cytokine. 2012; 59(2):382–91. https://doi.org/10.1016/j.cyto.2012.04.004 PMid: 22592037 DOI: https://doi.org/10.1016/j.cyto.2012.04.004

Araki K, Ellebedy AH, Ahmed R. TOR in the immune system. Curr Opin Cell Biol. 2011; 23(6):707–15. https://doi.org/10.1016/j.ceb.2011.08.006 PMid: 21925855 PMCid:PMC3241972 DOI: https://doi.org/10.1016/j.ceb.2011.08.006

Odegaard JI, Chawla A. The immune system as a sensor of the metabolic state. Immunity. 2013; 38(4):644–54. https://doi.org/10.1016/j.immuni.2013.04.001 PMid: 23601683 PMCid:PMC3663597 DOI: https://doi.org/10.1016/j.immuni.2013.04.001

Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Futur J Pharm Sci. 2021; 7(1). https://doi.org/10.1186/s43094-020-00161-8 PMid:33495733 PMCid:PMC7816146 DOI: https://doi.org/10.1186/s43094-020-00161-8

Martínez G, Mijares MR, De Sanctis JB. Effects of flavonoids and its derivatives on immune cell responses. Recent Pat Inflamm Allergy Drug Discov. 2019; 13(2):84–104. https://doi.org/10.2174/18722 13X13666190426164124 PMid:31814545 DOI: https://doi.org/10.2174/1872213X13666190426164124

Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules. 2019; 24(12):1–16. https://doi.org/10.3390/molecules24122277 PMid: 31248102 PMCid:PMC6631472 DOI: https://doi.org/10.3390/molecules24122277

Jantan I, Ahmad W, Bukhari SNA. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front Plant Sci. 2015; 6(AUG):1–18. https://doi.org/10.3389/ fpls.2015.00655 PMid:26379683 PMCid: PMC4548092 DOI: https://doi.org/10.3389/fpls.2015.00655

Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: A Flavonoid as an effective sensitizer for anticancer therapy; Insights into multifaceted mechanisms and applicability for combination therapy. Evidence-based Complement Altern Med. 2021; 2021(Figure 1). https://doi. org/10.1155/2021/9913179 PMid:34484407 PMCid: PMC8416379 DOI: https://doi.org/10.1155/2021/9913179

Venkatalakshmi P, Vadivel V, Brindha P. Role of phytochemicals as immunomodulatory agents: A review. Int J Green Pharm. 2016; 10(1):1–18.

Das DS, Mukherjee SK. Traditional Leafy Vegetables of Nadia District of Wes t Bengal Pharmaceutical Research and Bio-Science. Int J Pharm Res Bio- Science. 2015; (June).

Kumar ACK, Divya Sree MS, Lakshmi MS, Kumar SD. A review on south indian edible leafy vegetables. J Glob Trends Pharm Sci. 2013; 4(4):1248–56.

Technology C, Bengal W. Edible food plants of north bengal , its benefits and food value in daily diet - A study. 2018; 38–46.

Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol. 2022; 95(1):1–19. https://doi.org/10. 1111/sji.13106 DOI: https://doi.org/10.1111/sji.13106

Wang JH, Luan F, He XD, Wang Y, Li MX. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. J Tradit Complement Med. 2018; 8(1):24-38. https://doi.org/10.1016/j. jtcme.2017.04.001 PMid:29321986 PMCid: PMC5755984 DOI: https://doi.org/10.1016/j.jtcme.2017.04.001

Miean KH, Mohamed S. Apigenin. Content of Edible Tropical Plants. 2001; 3106–12. https://doi. org/10.1021/jf000892m PMid:11410016 DOI: https://doi.org/10.1021/jf000892m

Bae JH, Kim JY, Kim MJ, Chang SH, Park YS, Son CH, et al. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother. 2010; 33(4):391–401. https://doi. org/10.1097/CJI.0b013e3181d32f22 PMid:20386467 DOI: https://doi.org/10.1097/CJI.0b013e3181d32f22

Huang C, Jan R, Kuo C, Chu Y, Wang W, Lee M, et al. Natural flavone kaempferol suppresses chemokines expression in human monocyte thp-1 cells through MAPK pathways. 2010; 75(8):254–9. https://doi.org/10.1111/j.1750-3841.2010.01812.x PMid:21535503 DOI: https://doi.org/10.1111/j.1750-3841.2010.01812.x

Ginwala R, Bhavsar R, Moore P, Bernui M, Singh N, Bearoff F, et al. Apigenin modulates dendritic cell activities and curbs inflammation via relb inhibition in the context of neuroinflammatory diseases. J Neuroimmune Pharmacol. 2021; 16(2):403–24. https://doi.org/10.1007/s11481-020-09933-8 PMid: 32607691 PMCid:PMC7772281 DOI: https://doi.org/10.1007/s11481-020-09933-8

Li YR, Chen DY, Chu CL, Li S, Chen YK, Wu CL, et al. Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem. 2015; 26(12):1467–78. https://doi.org/10.1016/j.jnutbio.20 15.07.016PMid:26350255 DOI: https://doi.org/10.1016/j.jnutbio.2015.07.016

Zhu W, Chen X, Yu J, Xiao Y, Li Y, Wan S, et al. Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor. Biochem Pharmacol 2018; 154:18–27. https://doi. org/10.1016/j.bcp.2018.04.006 PMid:29656117 DOI: https://doi.org/10.1016/j.bcp.2018.04.006

Gao F, Wei D, Bian T, Xie P, Zou J, Mu H, et al. Genistein attenuated allergic airway inflammation by modulating the transcription factors T-bet, GATA-3 and STAT-6 in a murine model of asthma. Pharmacology. 2012; 89(3–4):229–36. https://doi. org/10.1159/000337180 PMid:22508471 DOI: https://doi.org/10.1159/000337180

Xu S, Kong YG, Jiao WE, Yang R, Qiao YL, Xu Y, et al. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis. Int Immunopharmacol. 2019; 72:402–12. https://doi.org/10.1016/j.intimp.2019.04.039 PMid: 31030096 DOI: https://doi.org/10.1016/j.intimp.2019.04.039

Yum MK, Jung MY, Cho D, Kim TS. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol Appl Pharmacol. 2011; 257(2):174–81. https://doi.org/10.1016/j.taap.2011. 09.002 PMid:21945492 DOI: https://doi.org/10.1016/j.taap.2011.09.002

Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007; 81(23–24):1602–14. https://doi.org/10.1016/j. lfs.2007.09.028 PMid:17977562 PMCid: PMC7094354 DOI: https://doi.org/10.1016/j.lfs.2007.09.028

Ahn SC, Kim GY, Kim JH, Baik SW, Han MK, Lee HJ, et al. Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and NF-κB. Biochem Biophys Res Commun. 2004; 313(1):148–55. https://doi.org/10.1016/j. bbrc.2003.11.108 PMid:14672711 DOI: https://doi.org/10.1016/j.bbrc.2003.11.108

Zhang K, Ge Z, Xue Z, Huang W, Mei M, Zhang Q, et al. Chrysin suppresses human CD14+ monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 2015; 288:13–20. https://doi.org/10.1016/j.jneuroim. 2015.08.017 PMid:26531689 DOI: https://doi.org/10.1016/j.jneuroim.2015.08.017

Yuan X, Li N, Zhang M, Lu C, Du Z, Zhu W, et al. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways. Biomed Pharmacother. 2020; 123:109747. https://doi. org/10.1016/j.biopha.2019.109747 PMid:31881484 DOI: https://doi.org/10.1016/j.biopha.2019.109747

Jiang S, Wang S, Zhang L, Tian L, Li L, Liu Z, et al. Hesperetin as an adjuvant augments protective anti-tumour immunity responses in B16F10 melanoma by stimulating cytotoxic CD8 + T cells. Scand J Immunol. 2020; 91(4):0–3. https://doi.org/10.1111/ sji.12867 PMid:31975405 DOI: https://doi.org/10.1111/sji.12867

Yang RY, Lin S, Kuo G. Content and distribution of flavonoids among 91 edible plant species. Asia Pac J Clin Nutr. 2008; 17(SUPPL. 1):275–9.

Adhikari T, Saha P. Quantitative estimation of immunomodulatory flavonoid quercetin by hptlc in different leafy vegetables available in west bengal. 2022; 14(4):423–8. https://doi.org/10.5530/ pres.14.4.62 DOI: https://doi.org/10.5530/pres.14.4.62

Some S, Mukherjee J. Study on some leafy vegetables and their medicinal uses at chanchal sub-division of Malda district, West Bengal. Int J Plant Environ. 2018; 4(01):97–104. https://doi.org/10.18811/ijpen. v4i01.11617 DOI: https://doi.org/10.18811/ijpen.v4i01.11617

Nagendra Prasad K, Shivamurthy GR, Aradhya SM. Ipomoea aquatica, an underutilized green leafy vegetable: A review. International Journal of Botany. 2008; 4:123–9. https://doi.org/10.3923/ ijb.2008.123.129 DOI: https://doi.org/10.3923/ijb.2008.123.129

Ishisaka A, Kawabata K, Miki S, Shiba Y, Minekawa S, Nishikawa T, et al. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS One. 2013; 8(11):1–17. https://doi.org/10.1371/ journal.pone.0080843 PMid:24260490 PMCid: PMC3834324 DOI: https://doi.org/10.1371/journal.pone.0080843

Saavedra-Leos MZ, Leyva-Porras C, Toxqui-Terán A, Espinosa-Solis V. Physicochemical properties and antioxidant activity of spray-dry broccoli (Brassica oleracea var Italica) stalk and floret juice powders. Molecules. 2021; 26(7). https://doi. org/10.3390/molecules26071973 PMid:33807418 PMCid:PMC8036675 DOI: https://doi.org/10.3390/molecules26071973

Ganeshpurkar A, Saluja AK. The Pharmacological Potential of Rutin. Saudi Pharm J. 2017; 25(2):149– 64. https://doi.org/10.1016/j.jsps.2016.04.025 PMid:28344465 PMCid:PMC5355559 DOI: https://doi.org/10.1016/j.jsps.2016.04.025

Akanji MA, Rotimi DE, Elebiyo TC, Awakan OJ, Adeyemi OS. Redox homeostasis and prospects for therapeutic targeting in neurodegenerative disorders. Oxid Med Cell Longev. 2021; 2021. https:// doi.org/10.1155/2021/9971885 PMid:34394839 PMCid:PMC8355971 DOI: https://doi.org/10.1155/2021/9971885

Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and its anti-allergic immune response. Molecules. 2016; 21(5):1–15. https://doi.org/10. 3390/molecules21050623 PMid:27187333 PMCid: PMC6273625 DOI: https://doi.org/10.3390/molecules21050623

Kumar D, Arya V, Kaur R, Bhat ZA, Gupta VK, Kumar V. A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect. 2012; 45(3):165–84. https://doi.org/10.1016/j. jmii.2011.09.030 PMid:22154993 DOI: https://doi.org/10.1016/j.jmii.2011.09.030

Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019; 8(2):1–30. https://doi.org/10.3390/antiox8020035 PMid: 30764536 PMCid:PMC6407021 DOI: https://doi.org/10.3390/antiox8020035