In Silico Computational Analysis of Citrus aurantium of Thurunji manapagu in Inhibiting the Receptor Target of Angiotensin-converting Enzyme Against Uratha Pitha Vatham (Hypertension)

Jump To References Section

Authors

  • Siddha Clinical Research Unit, Tirupati, Central Council for Research in Siddha (Under Ministry of AYUSH ) SVIMS Campus, Alipiri Road, Tirupati – 517507, Andhra Pradesh, India ,IN
  • Siddha Clinical Research Unit, Tirupati, Central Council for Research in Siddha (Under Ministry of AYUSH ) SVIMS Campus, Alipiri Road, Tirupati – 517507, Andhra Pradesh, India ,IN
  • Department of Gunapadam, National Institute of Siddha (An Autonomous body under the Ministry of AYUSH), Tambaram Sanatorium, Chennai – 600047, Tamil Nadu, India ,IN
  • Department of Gunapadam, National Institute of Siddha (An Autonomous body under the Ministry of AYUSH), Tambaram Sanatorium, Chennai – 600047, Tamil Nadu, India ,IN
  • National Institute of Siddha (An Autonomous Body Under the Ministry of AYUSH), Tambaram Sanatorium, Chennai – 600047, Tamil Nadu, India ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32916

Keywords:

Antihypertensive, Citrus aurantium, Molecular Docking, Siddha Medicine, Uratha Pitha Vatham

Abstract

Citrus aurantium (Thurunji) is a tree cultivated in various parts of the world. The fruit pulp is used to make juices, marmalade and pickles. It is commonly used by tribes to treat digestive disorders, constipation, heaviness in the chest, prolapse of the uterus, anorexia, chest pain, cold, and cough. In the Siddha system of medicine, Citrus aurantium fruit pulp is used to prepare a formulation, syrup in consistency named Thurunji manapaagu indicated for diseases due to deranged pitha humor. According to the Siddha system of medicine Hypertension termed Uratha Pitha Vatham is an ailment that occurs due to an elevated pitham. Considering the facts an attempt of in silico docking study was done with the selected phytochemicals such as Linalool, Apigenin, Ichangin, Kaempferol, Luteolin, Limonin, Limonene, Myrcene, Diosmetin and Tangeretin of Citrus aurantium against Angiotensin Converting Enzyme (ACE) and the results are detailed in this article.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-03

How to Cite

Sudalaimani, R., Thangapandiyan, S., Andi, M., Udayar, S. S., & Ramasamy, M. (2023). <i>In Silico</i> Computational Analysis of <i>Citrus aurantium</i> of <i>Thurunji manapagu</i> in Inhibiting the Receptor Target of Angiotensin-converting Enzyme Against <i>Uratha Pitha Vatham</i> (Hypertension). Journal of Natural Remedies, 23(4), 1411–1424. https://doi.org/10.18311/jnr/2023/32916

Issue

Section

Research Articles

Categories

Received 2023-02-07
Accepted 2023-09-20
Published 2023-11-03

 

References

Gentis N, Licht A, Boura A, De Franceschi D, Win Z, Aung DW, Dupont-Nivet G. Fossil wood from the lower Miocene of Myanmar (Natma Formation): palaeoenvironmental and biogeographic implications. Geodiversitas. 2022; 44(28): 853-909. https://doi.org/10.5252/geodiversitas2022v44a28 DOI: https://doi.org/10.5252/geodiversitas2022v44a28

Khan H, Nabavi SM, Sureda A, Mehterov N, Gulei D, Berindan-Neagoe I, et al. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum. European Journal of Medicinal Chemistry. 2018; 153:29-33. https://doi.org/10.1016/j.ejmech.2017.10.065 DOI: https://doi.org/10.1016/j.ejmech.2017.10.065

Nabavi SF, Khan H, D’onofrio G, Šamec D, Shirooie S, Dehpour AR, et al. Apigenin as neuroprotective agent: of mice and men. Pharmacological Research. 2018; 128:359-65. https://doi.org/10.1016/j.phrs.2017.10.008 DOI: https://doi.org/10.1016/j.phrs.2017.10.008

Khan H, Nabavi SM, Habtemariam S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sciences. 2018; 193:153-8. https://doi.org/10.1016/j.lfs.2017.10.025 DOI: https://doi.org/10.1016/j.lfs.2017.10.025

Lim SW, Lee DR, Choi BK, Kim HS, Yang SH, Suh JW, et al. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pacific Journal of Tropical Medicine. 2016; 9(12):1158-64. https://doi.org/10.1016/j.apjtm.2016.10.009 DOI: https://doi.org/10.1016/j.apjtm.2016.10.009

Zhao HY, Yang L, Wei J, Huang M, Jiang JG. Bioactivity evaluations of ingredients extracted from the flowers of Citrus aurantium L. var. amara Engl. Food chemistry. 2012; 135(4):2175-81. https://doi.org/10.1016/j.foodchem.2012.07.018 DOI: https://doi.org/10.1016/j.foodchem.2012.07.018

Costa CA, Cury TC, Cassettari BO, Takahira RK, Flório JC, Costa M. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT 1A-receptors and reduces cholesterol after repeated oral treatment. BMC Complementary and Alternative Medicine. 2013; 13.

https://doi.org/10.1186/1472-6882-13-42 DOI: https://doi.org/10.1186/1472-6882-13-42

Akhlaghi M, Shabanian G, Rafieian-Kopaei M, Parvin N, Saadat M, Akhlaghi M. Citrus aurantium blossom and preoperative anxiety. Revista Brasileira de Anestesiologia. 2011;61:707-12.

https://doi.org/10.1590/S0034-70942011000600002 DOI: https://doi.org/10.1590/S0034-70942011000600002

Moraes TM, Kushima H, Moleiro FC, Santos RC, Rocha LR, Marques MO, et al. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. ChemicoBiological Interactions. 2009; 180(3):499-505. https://doi.org/10.1016/j.cbi.2009.04.006 DOI: https://doi.org/10.1016/j.cbi.2009.04.006

Karabıyıklı Ş, Değirmenci H, Karapınar M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT-Food Science and Technology. 2014; 55(2):421-5. https://doi.org/10.1016/j.lwt.2013.10.037 DOI: https://doi.org/10.1016/j.lwt.2013.10.037

Colker CM, Kaiman DS, Torina GC, Perlis T, Street C. Effects of Citrus aurantium extract, caffeine, and St. John’s wort on body fat loss, lipid levels, and mood states in overweight healthy adults. 1999; 60(3):145-153. https://doi.org/10.1016/S0011-393X(00)88523-9 DOI: https://doi.org/10.1016/S0011-393X(00)88523-9

Stohs SJ, Preuss HG, Shara M. Issues regarding a FACT review paper on the efficacy of herbal supplements containing Citrus aurantium and synephrine alkaloids for the management of overweight and obesity. Focus on Alternative and Complementary Therapies. 2013; 1(18):457. https://doi.org/10.1111/fct.12005 DOI: https://doi.org/10.1111/fct.12005

Haaz S, Fontaine KR, Cutter G, Limdi N, Perumean‐Chaney S, Allison DB. Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: An update. Obesity reviews. 2006; 7(1):79-88. https://doi.org/10.1111/j.1467-789X.2006.00195.x DOI: https://doi.org/10.1111/j.1467-789X.2006.00195.x

Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P. Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phytotherapy Research. 2007; 21(4):374-7. https://doi.org/10.1002/ptr.1968 DOI: https://doi.org/10.1002/ptr.1968

Oliveira SAC, Zambrana JRM., Di Iorio FBR, Pereira CA, Jorge AOC. The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. 2014; 28(1):22-7. https://doi.org/10.1590/S180683242013005000024 DOI: https://doi.org/10.1590/S1806-83242013005000024

Meléndez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. 2006; 13(4):272-6. https:// doi.org/10.1016/j.phymed.2004.11.009 DOI: https://doi.org/10.1016/j.phymed.2004.11.009

Xing H, Zhang K, Zhang R, Shi H, Bi K, Chen X. Antidepressant-like effect of the water extract of the fixed combination of Gardenia jasminoides, Citrus aurantium and Magnolia officinalis in a rat model of chronic unpredictable mild stress. Phytomedicine. 2015; 22(13):1178-85. https://doi.org/10.1016/j.phymed.2015.09.004 DOI: https://doi.org/10.1016/j.phymed.2015.09.004

Siddha Central Research Institute. Siddha treatment guideline for selected Non-communicable Diseases. Chennai: Siddha Central Research Institute; 2014. p. 245-63.

Staessen JA, Wang J, Bianchi G, Birkenhäger WH. Essential Hypertension. The Lancet. 2003; 361(9369):1629-41. https://doi.org/10.1016/S0140-6736(03)13302-8 DOI: https://doi.org/10.1016/S0140-6736(03)13302-8

World Health Organization. Hypertension. Available from: https://www.who.int/health-topics/hypertension#tab=tab_1

Uthamarayan KN, Mudhaliyar KSM. Siddha Vaidhiya Thirattu, Department of Indian Medicine and Homeopathy, Chennai-106.First Edition. Pp. 259.

Suryawanshi JA. An overview of Citrus aurantium used in treatment of various diseases. African Journal of Plant Science. 2011; 5(7):390-395.

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel Angiotensin-Converting Enzymerelated carboxypeptidase (ACE2) converts Angiotensin I to Angiotensin 1-9. Circulation Research. 2000; 87(5):e1-e9. https://doi.org/10.1161/01.RES.87.5.e1 DOI: https://doi.org/10.1161/01.RES.87.5.e1

Yusuf S, Sleight P, Pogue JF, Bosch J, Davies R, Dagenais G. Effects of an Angiotensin-Converting-Enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The New England journal of medicine. 2000; 342(3):145-153.https://doi.org/10.1056/NEJM200001203420301 DOI: https://doi.org/10.1056/NEJM200001203420301

Pozzan A. Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery. Current Pharmaceutical Design. 2006; 12(17):2099-2110. https://doi.org/10.2174/138161206777585247 DOI: https://doi.org/10.2174/138161206777585247

Morris GM, Lim-Wilby M. Molecular modeling of proteins. Methods in Molecular Biology. 2008; 443:365-82. https:// doi.org/10.1007/978-1-59745-177-2_19 DOI: https://doi.org/10.1007/978-1-59745-177-2_19

AlSheikh HM, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, et al. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020; 9(8):480. https://doi.org/10.3390/antibiotics9080480 DOI: https://doi.org/10.3390/antibiotics9080480

Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences. 2019; 20(18):433. https://doi.org/10.3390/ijms20184331 DOI: https://doi.org/10.3390/ijms20184331

Jia Z, Song X, Shi J, Wang W, He K. Transcriptomebased drug repositioning for coronavirus disease 2019 (COVID-19). Pathogens and Disease. 2020; 78(4). https://doi.org/10.1093/femspd/ftaa036 DOI: https://doi.org/10.1093/femspd/ftaa036

Abdullahi M, Adeniji SE. In-silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chemistry Africa. 2020; 3(4):989-1000. https://doi.org/10.1007/s42250-020-00162-3 DOI: https://doi.org/10.1007/s42250-020-00162-3

Abdullahi M, Shallangwa GA, Uzairu A. In silico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of H5N1 influenza A virus subtype. Beni-Suef University Journal of Basic and Applied Sciences. 2020; 9(1). https://doi.org/10.1186/s43088-019-0023-y DOI: https://doi.org/10.1186/s43088-019-0023-y

Suntar I, Khan H, Patel S, Celano R, Rastrelli L. An overview on Citrus aurantium L.: Its functions as food ingredient and therapeutic agent. Oxidative Medicine and Cellular longevity. 2018; 2018. https://doi.org/10.1155/2018/7864269 DOI: https://doi.org/10.1155/2018/7864269

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998; 19(14):1639-1662.

https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Bikadi Z, Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics. 2009; 1:1-6. https://doi.org/10.1186/1758-2946-1-15 DOI: https://doi.org/10.1186/1758-2946-1-15

Passos-Silva DG, Brandan E, Santos RA. Angiotensins as therapeutic targets beyond heart disease. Trends in Pharmacological Sciences. 2015; 36(5):310-20. https://doi.org/10.1016/j.tips.2015.03.001 DOI: https://doi.org/10.1016/j.tips.2015.03.001

Chakraborty R, Roy S. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetescentric complications. Journal of Integrative Medicine. 2021; 19(6):478-92.https://doi.org/10.1016/j.joim.2021.09.006 DOI: https://doi.org/10.1016/j.joim.2021.09.006

Mensah JK, Okoli RI, Turay AA, Ogie-Odia EA. Phytochemical analysis of medicinal plants used for the

management of hypertension by Esan people of Edo state, Nigeria. Ethnobotanical Leaflets. 2009; 2009(10):7.