Delamination Behavior of Dyneema Composite Laminate due to High Velocity Impact using LSDYNA

Jump To References Section

Authors

  • Department of Mechanical Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru – 570006, Karnataka ,IN
  • Department of Mechanical Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru – 570006, Karnataka ,IN
  • Department of Mechanical Engineering, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru – 570006, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/41613

Keywords:

Composite Delamination, Dyneema, Explicit Analysis, Impact Dynamics, LS-Dyna, *MAT_59.

Abstract

Failure of composite not only includes tensile or compression failure of fiber matrix, but also the delamination between plies. The current study investigates a methodology for the Ply-Delamination of Dyneema material due Ballistics impact using LSDYNA. A new methodology was implemented in order to effectively capture the ply delamination and the damage caused due to the impact for different velocities. Numerical results obtained were correlated with previous existing simulation results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Puneeth, M. L., Mallesh, G., & Manjunatha, H. S. (2023). Delamination Behavior of Dyneema Composite Laminate due to High Velocity Impact using LSDYNA. Journal of Mines, Metals and Fuels, 71(12), 2575–2584. https://doi.org/10.18311/jmmf/2023/41613

 

References

van der Werff H, Heisserer U. High-performance ballistic fibers: Ultra-high molecular weight polyethylene (UHMWPE). In Advanced fibrous composite materials for ballistic protection, pp. 71-107. Woodhead Publishing, 2016. DOI: https://doi.org/10.1016/B978-1-78242-461-1.00003-0

Rajbhandari SP, Scott ML. Thomson RS, Hachenberg D. An approach to modelling and predicting impact damage in composite structures. In: ICAS congress, pp. 8-13. 2002.

Gama BA, Xiao JR, Haque M, Yen C, Gillespie J. Experimental and numerical investigations on damage and delamination in thick plain weave S-2 glass composites under quasi-static punch shear loading. Center for Composite Materials, University of Delaware. 2004 Feb 1. DOI: https://doi.org/10.21236/ADA421310

Olsson R, Donadon MV, Falzon BG. Delamination threshold load for dynamic impact on plates. International Journal of Solids and Structures. 2006 May 1; 43(10):3124-41. DOI: https://doi.org/10.1016/j.ijsolstr.2005.05.005

Fleming DC. Modelling composite crushing initiation using a cohesive element formulation. International Journal of Crashworthiness. 2011 Oct 1; 16(5):475-85. DOI: https://doi.org/10.1080/13588265.2011.606999

Ahn JH, Nguyen KH, Park YB, Kweon JH, Choi JH. A numerical study of the high-velocity impact response of a composite laminate using LS-DYNA. International Journal Aeronautical and Space Sciences. 2010 Sep 15; 11(3):221-6. DOI: https://doi.org/10.5139/IJASS.2010.11.3.221

Dogan F, Hadavinia H, Donchev T, Bhonge PS. Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact. Central European Journal of Engineering. 2012 Dec; 2:612-26. DOI: https://doi.org/10.2478/s13531-012-0018-0

Ilyas M, Espinosa C, Lachaud F, Salaün M. Simulation of dynamic delamination and mode I energy dissipation. Simulation of dynamic delamination and mode I energy dissipation. 7th European LS-DYNA Conference, May 2009, Salzburg, Austria. pp.1-7. ffhal-01851921f

Khan SH, Sharma AP, Kitey R, Parameswaran V. Effect of metal layer placement on the damage and energy absorption mechanisms in aluminium/glass fibre laminates. International Journal of Impact Engineering. 2018 Sep 1; 119:14-25. DOI: https://doi.org/10.1016/j.ijimpeng.2018.04.011

Hazzard MK, Trask RS, Heisserer U, Van Der Kamp M, Hallett SR. Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact. Composites Part A: Applied Science and Manufacturing. 2018 Dec 1; 115:31-45. DOI: https://doi.org/10.1016/j.compositesa.2018.09.005

Sławski S, Szymiczek M, Kaczmarczyk J, Domin J, Duda S. Experimental and numerical investigation of striker shape influence on the destruction image in multilayered composite after low velocity impact. Applied Sciences. 2019 Dec 31;10(1):288. DOI: https://doi.org/10.3390/app10010288

Wang J, Morris TP, Bihamta R, Pan YC. Numerical and experimental verification of impact response of laminated aluminum composite structure. Archive of Mechanical Engineering. 2020; 67(2):127-47. DOI: https://doi.org/10.24425/ame.2020.131687

Rabiee A, Ghasemnejad H. Finite element modelling approach for progressive crushing of composite tubular absorbers in LS-DYNA: review and findings. Journal of Composites Science. 2022; 6(1):11. DOI: https://doi.org/10.3390/jcs6010011

Hallquist JO. LS-DYNA® Keyword User’s Manual Volume I. Livermore Software Technology Corporation: Livermore, CA, USA. 2014.

Nguyen LH, Ryan S, Cimpoeru SJ, Mouritz AP, Orifici AC. The effect of target thickness on the ballistic performance of ultra-high molecular weight polyethylene composite. International Journal of Impact Engineering. 2015 Jan 1; 75:174-83. DOI: https://doi.org/10.1016/j.ijimpeng.2014.07.008