Dielectric Properties of Aluminium and Silver Doped Zinc Oxide Nano Powder Prepared by Solution Combustion Synthesis

Jump To References Section

Authors

  • Department of Physics, Government First Grade College, Hoskote, Bengaluru Rural - 562114, Karnataka ,IN
  • Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru – 560054, Karnataka ,IN
  • Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN
  • Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN
  • Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36050

Keywords:

Dielectric Constant, Dielectric Loss, Zinc Oxide

Abstract

Aluminium and Silver doped Zinc Oxide nano powder were synthesized by Solution Combustion method using Sucrose (C12H22O11) as fuel at 600o C. X-Ray diffraction pattern analysis confirms synthesized nano powders crystalized in single phase wurtzite structure matched with JCPDS-36-1451. Addition of dopant controls the crystallite size of the synthesized nano powder. The study of dielectric permittivity, dielectric loss, AC conductivity and impedance were investigated in the frequency range of 100Hz to 5MHz at room temperature. It is evident from the analysis that dielectric properties of the samples depends on the nature of the dopant.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Sangeetha, A., Nagabhushan, B. M., Chanappa, Subramani, & Ravikiran. (2023). Dielectric Properties of Aluminium and Silver Doped Zinc Oxide Nano Powder Prepared by Solution Combustion Synthesis. Journal of Mines, Metals and Fuels, 71(11), 2309–2318. https://doi.org/10.18311/jmmf/2023/36050

 

References

Kumar BR, Hymavathi B, Subba Rao T. Effect of the ceria dopant on the structural and dielectric properties of ZnO semiconductors. J Sci Adv Mater Devices. 2018; 3:433-439. https://doi.org/10.1016/j.jsamd.2018.09.001. DOI: https://doi.org/10.1016/j.jsamd.2018.09.001

Yang J, Gao M, Yang L, et al. Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl Surf Sci. 2008; 255:2646-2650. https://doi.org/10.1016/j. apsusc.2008.08.001. DOI: https://doi.org/10.1016/j.apsusc.2008.08.001

Ul Haq B, Afaq A, Ahmed R, Naseem S. A comprehensive DFT study of zinc oxide in different phases. Int J Mod Phys C. 2012; 23:1250043. DOI: https://doi.org/10.1142/S012918311250043X

Ashrafi A, Jagadish C. Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys. 2007; 102(4). DOI: https://doi.org/10.1063/1.2787957

Alivov YI, Kalinina EV, Cherenkov AE, et al. Fabrication and Characterization of n-ZnO/p-AlGaN Heterojunction Light-Emitting Diodes on 6H-SiC Substrates. Appl Phys Lett. 2003; 83(23):4719-4721.

https://doi.org/10.1063/1.1632537. DOI: https://doi.org/10.1063/1.1632537

Kim HS, Lugo F, Pearton SJ, et al. Phosphorus Doped ZnO Light Emitting Diodes Fabricated via Pulsed Laser Deposition. Appl Phys Lett. 2008; 92(11):112108- 112110. https://doi.org/10.1063/1.2900711. DOI: https://doi.org/10.1063/1.2900711

Singh A, Kumar D, et al. J Electrochem Soc. 2011; 158(1):G9–G12. http://dx.doi.org/10.1149/1.3511788. DOI: https://doi.org/10.1149/1.3511788

Murugadoss G. J Mater Sci Technol. 2012; 28(7):587– 593. DOI: https://doi.org/10.1016/S1005-0302(12)60102-9

Chaari M, Matoussi A. Electrical conduction and dielectric studies of ZnO pellets. Phys B Condens Matter. 2012; 407:3441‒3447. DOI: https://doi.org/10.1016/j.physb.2012.04.056

Ozgur U, Alivov YI, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005; 98. https://doi.org/10.1063/1.1992666. DOI: https://doi.org/10.1063/1.1992666

Divya NK, Aparna PU, Pradyumnan PP. Dielectric Properties of Er3+ Doped ZnO Nanocrystals. Adv Mater Phys Chem. 2015; 5:287-294. http://dx.doi.org/10.4236/ ampc.2015.58028. DOI: https://doi.org/10.4236/ampc.2015.58028

Ahmad MP, Rao AV, Babu KS, Rao GN. Effect of carbon- doping on structural and dielectric properties of zinc oxide. J Adv Dielectrics. 2020; 10(4):2050017. http:// doi:10.1142/S2010135X20500174.

Lanje AS, Sharma SJ, Ningthoujam RS, et al. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol. 2013; 24:331‒335. DOI: https://doi.org/10.1016/j.apt.2012.08.005

Jayachandraiah, Krishnaiah, Erbium induced raman studies and dielectric properties of Er-doped ZnO nanoparticles. Adv Mater Lett. 2015; 6(8):743-748. http://doi:10.5185/amlett.2015.5801. DOI: https://doi.org/10.5185/amlett.2015.5801

Badreddine K, Srour A, Awad R, Abou-Aly AI. The investigation of mechanical and dielectric properties of Samarium doped ZnO nanoparticles. Mater Res Express. 2020; 7:025016. https://doi.org/10.1088/2053- 1591/ab7064. DOI: https://doi.org/10.1088/2053-1591/ab7064

Vignesh K, Nair AS, Udhayakeerthana C, Kalaivani T. Synthesis and characterization of ZnO nanoparticles using sol-gel method and their antibacterial study. IOP Conf Series: Mater Sci Eng. 2022; 1219:012019. https:// doi:10.1088/1757-899X/1219/1/012019. DOI: https://doi.org/10.1088/1757-899X/1219/1/012019

Vishwakarma A, Singh SP. Synthesis of Zinc Oxide Nanoparticle by Sol-Gel Method and Study its Characterization. Int J Res Appl Sci Eng Technol. 2020; 8(4). DOI: https://doi.org/10.22214/ijraset.2020.4265

Mohan S, Vellakkat M, Aravind A, Reka U. Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express. 2020; 1:030028. https://doi. org/10.1088/2632-959X/abc813. DOI: https://doi.org/10.1088/2632-959X/abc813

Bharti DB, Bharathi AV. Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence. 2016; 32(3):317-320. https:// doi:10.1002/bio.3180. PMID: 27430489. DOI: https://doi.org/10.1002/bio.3180

Porrawatkul P, Pimsen R, Kuyyogsuy A, et al. Microwave- assisted synthesis of Ag/ZnO nanoparticles using Averrhoa carambola fruit extract as the reducing agent and their application in cotton fabrics with antibacterial and UV protection properties. RSC Adv. 2022; 12:15008. https://doi:10.1039/d2ra01636b. DOI: https://doi.org/10.1039/D2RA01636B

Zhou Z, Wang J, Jhun CG. ZnO Nanospheres Fabricated by Mechanochemical Method with Photocatalytic Properties. 2021; 11:572. https://doi.org/10.3390/ catal11050572. DOI: https://doi.org/10.3390/catal11050572

Pravin JC, Nirmal D, Prajoon P, Kumar NM, Ajayan J. Investigation of 6T SRAM memory circuit using high- k dielectrics based nano scale junctionless transistor. Superlattices Microstruct. 2017; 104:470–476. DOI: https://doi.org/10.1016/j.spmi.2017.03.012

Singh H, Kumar D, Sawant KK, Devunuri N, Banerjee S. Co-Doped ZnO-PVA Nanocomposite for EMI Shielding. Polym-Plast Technol Eng. https://doi:10.108 0/03602559.2015.1070869.

Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019; 1:607. https://doi.org/10.1007/s42452-019-0592-3. DOI: https://doi.org/10.1007/s42452-019-0592-3

Kołodziejczak-Radzimska A, Jesionowski T. Zinc Oxide—From Synthesis to Application: A Review. Materials. 2014; 7:2833-2881. https://doi:10.3390/ ma7042833. DOI: https://doi.org/10.3390/ma7042833

Gao Q, Dai Y, Li X. Effects of mn dopant on tuning carrier concentration in Mn doped ZnO nanoparticles synthesized by co-precipitation technique. J Mater Sci. 2018; 295:3568–3575. DOI: https://doi.org/10.1007/s10854-017-8286-3

Kaur M, Kumar V, Singh J, Datt J, Sharma R. Effect of Cu-N co-doping on the dielectric properties of ZnO nanoparticles. Mater Technol. 2022. https://doi:10.1080/ 10667857.2022.2055909.

Ansari SA, Nisar A, Fatma B, Khan W, Naqvi AH. Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater Sci Eng B. 2012; 177:428– 435. https://doi:10.1016/j.mseb.2012.01.022. DOI: https://doi.org/10.1016/j.mseb.2012.01.022

Zia A, Ahmed S, Shah NA, Anis-ur-Rehman M, Khan EU, Basit M. Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures. Physica B. 2015; 473:42–47. https://doi.org/10.1016/j. physb.2015.05.024.

Ahmad MP, Rao AV, Babu KS, Rao GN. Effect of carbon- doping on structural and dielectric properties of zinc oxide. J Adv Dielectrics. 2020; 10(4):2050017. http:// doi:10.1142/S2010135X20500174. DOI: https://doi.org/10.1142/S2010135X20500174

Kaur M, Kumar V, Kaur P, et al. Effect on the dielectric properties due to In–N co-doping in ZnO particles. J Mater Sci: Mater Electron. 2021; 32:8991–9004. https:// doi.org/10.1007/s10854-021-05570-w. DOI: https://doi.org/10.1007/s10854-021-05570-w

Zulfiqar, Zubair M, Khan A, Hua T, Ilyas N, Fashu S, Afzal AM. Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021- 05610-5.

Hassan MM, Ahmed AS, Chaman M, Khan W. Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater Res Bull. 2012; 47:3952–3958. http://dx.doi.org/10.1016/j.mater- resbull.2012.08.015. DOI: https://doi.org/10.1016/j.materresbull.2012.08.015

Badali Y, Altındal Ş, Uslu İ. Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Prog Nat Sci: Mater Int. 2018; 28:325-331. https://doi.org/10.1016/j.pnsc.2018.05.003. DOI: https://doi.org/10.1016/j.pnsc.2018.05.003

Ye XY, Zhou YM, Sun YQ, Chen J. J Nanopart Res. 2009; 11:1159–1166. https://doi.org/10.1007/s11051-008- 9511-z. DOI: https://doi.org/10.1007/s11051-008-9511-z

Chakraborti D, Narayan J, Prater JT. Room temperature ferromagnetism in Zn1 − xCuxO thin films. Appl Phys Lett. 2007; 90:062504–062506. DOI: https://doi.org/10.1063/1.2450652

Mass J, Bhattacharya P, Katiyar RS. Effect of high substrate temperature on Al-doped ZnO films grown by pulsed laser deposition. Mater Sci Eng B. 2003; 103:9–15. DOI: https://doi.org/10.1016/S0921-5107(03)00127-2

Dey B, Narzary R, Chouhan L, Bhattacharjee S, Parida BN, Mondal A, Ravi S, Srivastava SK. Crystal structure, optical and dielectric properties of Ag:ZnO composite- like compounds. J Mater Sci: Mater Electron. https://doi. org/10.1007/s10854-021-07560-4.

Wagner KW. Am Phys. 1973; 40:817–819. DOI: https://doi.org/10.1093/icb/40.5.819

Zamiri R, Singh B, Belsley MS. Structural and dielectric properties of Al-doped ZnO nanostructure. Ceram Int. 2014; 40:6031–6036. http://dx.doi.org/10.1016/j.cera-mint.2013.11.052. DOI: https://doi.org/10.1016/j.ceramint.2013.11.052

Zia A, Ahmed S, Shah NA, Anis-ur-Rehman M, Khan EU, Basit M. Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures. Physica B. 2015; 473:42–47. https://doi.org/10.1016/j. physb.2015.05.024. DOI: https://doi.org/10.1016/j.physb.2015.05.024