A Review on Tool Life in Coal Measures Rocks

Jump To References Section


  • Department of Mechanical Engineering, Alliance College of Engineering and Design, Alliance University, Bengaluru – 562106, Karnataka ,IN




Coatings, Reliability, Rock Properties, Tool Life, Tool Wear


Tungsten carbide inserts in rock drill bits are predominantly used in drilling rocks, particularly in mining industries. The research studies performed on drill bits have been limited to several factors such as collecting failure data of bit components from the field, conducting wear tests considering rock properties, and introducing new coated insert materials. The role of Artificial Intelligence (AI) and Machine Learning (ML) for the betterment of tool wear with real-time data is limited. The present study has offered an evaluative perspective of an essential industrial issue. In this review, a concept map presents a visual organization and representation of knowledge obtained during the study. Utilizing the propositions from the concept map, a brief review of the integrated concepts of researchers relating drill bits, failure data, numerical and statistical models, wear analysis, reliability assessment, and prerequisites in developing new materials have been discussed in the backdrop of the present study.


Download data is not yet available.


Metrics Loading ...




How to Cite

Prakash, S. (2024). A Review on Tool Life in Coal Measures Rocks. Journal of Mines, Metals and Fuels, 72(1), 1–11. https://doi.org/10.18311/jmmf/2024/35911



Received 2023-12-15
Accepted 2024-02-09
Published 2024-03-29



Bourgoyne AT, Young FA. A multiple regression approach to optimal drilling and abnormal pressure detection. SPE Repr Ser. 1999; 49:27–36.

Wijk G. Rotary drilling prediction. Int J Rock Mech Min Sci. 1991; 28(1):35–42. https://doi.org/10.1016/0148- 9062(91)93231-T DOI: https://doi.org/10.1016/0148-9062(91)93231-T

Hareland G, Wu A, Rashidi B. A drilling rate model for roller cone bits and its application. 2010. https://doi. org/10.2118/129592-MS DOI: https://doi.org/10.2118/129592-MS

Zhao Y, Noorbakhsh A, Koopialipoor M, Azizi A, Tahir MM. A new methodology for optimization and prediction of rate of penetration during drilling operations. Eng Comput. 2020; 36(2):587–95. https:// doi.org/10.1007/s00366-019-00715-2 DOI: https://doi.org/10.1007/s00366-019-00715-2

Mazen AZ, Rahmanian N, Mujtaba I, Hassanpour A. Prediction of penetration rate for PDC bits using indices of rock drillability, cuttings removal, and bit wear. SPE Drill. Complet. 2021; 36(2):320–37. https://doi. org/10.2118/204231-PA DOI: https://doi.org/10.2118/204231-PA

Bataee M, Kamyab M, Ashena R. Investigation of various ROP models and optimization of drilling parameters for PDC and roller-cone bits in Shadegan oil field. 2010. https://doi.org/10.2118/130932-MS DOI: https://doi.org/10.2118/130932-MS

Praillet R. Blasthole drilling, rotary drilling and the four kingdoms. World Min Equipments. 1998; 20–23.

Alber M. Stress dependency of the Cerchar Abrasivity Index (CAI) and its effects on wear of selected rock cutting tools. Tunn Undergr Sp Technol. 2008; 23(4):351–9. https://doi.org/10.1016/j.tust.2007.05.008 DOI: https://doi.org/10.1016/j.tust.2007.05.008

Kahraman S. Rotary and percussive drilling prediction using regression analysis. Int J Rock Mech Min Sci. 1999; 36(7):981–9. https://doi.org/10.1016/S0148- 9062(99)00050-9 DOI: https://doi.org/10.1016/S0148-9062(99)00050-9

Altindag R. The role of rock brittleness on analysis of percussive drilling performance. Proc. of 5th National Rock Mech Symp, Turkey. 2000; 105–12.

Bilgin N, Kahraman S. Drillability prediction in rotary blast hole drilling. 18. Imcet. 2003; 1990:177–82.

Saeidi O, Torabi SR, Ataei M, Rostami J. A stochastic penetration rate model for rotary drilling in surface mines. Int J Rock Mech Min Sci. 2014; 68:55–65. https:// doi.org/10.1016/j.ijrmms.2014.02.007 DOI: https://doi.org/10.1016/j.ijrmms.2014.02.007

Cheniany A, Hasan KS, Shahriar K, Hamidi JK. An estimation of the penetration rate of rotary drills using the Specific Rock Mass Drillability index. Int J Min Sci Technol. 2012; 22(2):187–93. https://doi.org/10.1016/j. ijmst.2011.09.001 DOI: https://doi.org/10.1016/j.ijmst.2011.09.001

Plinninger RJ, Spaun G, Thuro K. Predicting tool wear in drill and blast. Tunnels Tunn Int. 2002; 34(4):38–41.

Osburn HJ. Wear of rock-cutting tools. Powder Metall. 1969; 12(24):471–502. https://doi.org/10.1179/ pom.1969.12.24.015 DOI: https://doi.org/10.1179/pom.1969.12.24.015

Plinninger RJ, Spaun G, Thuro K. Prediction and classification of tool wear in drill and blast tunnelling. Proc 9th Congr Int Assoc Eng Geol Environ. 2002; 2226–36.

Moradizadeh M, Cheshomi A, Ghafoori M, TrighAzali S. Correlation of equivalent quartz content, Slake durability index and Is50 with Cerchar abrasiveness index for different types of rock. Int J Rock Mech Min Sci. 2016; 86:42–47. https://doi.org/10.1016/j.ijrmms.2016.04.003 DOI: https://doi.org/10.1016/j.ijrmms.2016.04.003

Spaun G, Thuro K. Introducing the ‘destruction work’ as a new rock property of toughness referring to drillability in conventional drill-and blast tunnelling. Paper presented at: The ISRM International Symposium – EUROCK 96; 1996 September; Turin, Italy.

Plinninger RJ. Abrasiveness assessment for hard rock drilling. Geomech. und Tunnelbau. 2008; 1(1):38–46. https://doi.org/10.1002/geot.200800004 DOI: https://doi.org/10.1002/geot.200800004

Yarali O, Yaşar E, Bacak G, Ranjith PG. A study of rock abrasivity and tool wear in coal measures rocks. Int J Coal Geol. 2008; 74(1):53–66. https://doi.org/10.1016/j. coal.2007.09.007 DOI: https://doi.org/10.1016/j.coal.2007.09.007

West G. Rock abrasiveness testing for tunnelling. Int J Rock Mech Min Sci. 1989; 26(2):151–60. https://doi. org/10.1016/0148-9062(89)90003-X DOI: https://doi.org/10.1016/0148-9062(89)90003-X

Plinninger RJ. Hardrock abrasivity investigation using the Rock Abrasivity Index (RAI). 11th IAEG Congr. 2010; 341.

Sato M, Aoki T, Tanaka H, Takeda S. Variation of temperature at the bottom surface of a hole during drilling and its effect on tool wear. Int J Mach Tools Manuf. 2013; 68:40–47. https://doi.org/10.1016/j. ijmachtools.2013.01.007 DOI: https://doi.org/10.1016/j.ijmachtools.2013.01.007

Agapiou JS, Stephenson DA. Analytical and experimental studies of drill temperatures. J Manuf Sci Eng Trans ASME. 1994; 116(1):54–60. https://doi. org/10.1115/1.2901809 DOI: https://doi.org/10.1115/1.2901809

Loui PJ, Rao KUM. Experimental investigations of pickrock interface temperature in drag-pick cutting. Indian J Eng Mater Sci. 1997; 4:63–6

Suto Y, Takahashi H. Effect of the load condition on frictional heat generation and temperature increase within a tri-cone bit during high-temperature formation drilling. Geothermics. 2011; 40(4):267–74. https://doi. org/10.1016/j.geothermics.2011.08.004 DOI: https://doi.org/10.1016/j.geothermics.2011.08.004

Appl FC, Wilson CC, Lakshman I. Measurement of forces, temperatures and wear of PDC cutters in rock cutting. Wear. 1993; 169(1):9-24. https://doi. org/10.1016/0043-1648(93)90386-Z DOI: https://doi.org/10.1016/0043-1648(93)90386-Z

Shankar VK, Kunar BM, Murthy CS, Ramesh MR. Measurement of bit-rock interface temperature and wear rate of the tungsten carbide drill bit during rotary drilling. Friction. 2020; 8(6):1073-82. https://doi. org/10.1007/s40544-019-0330-2 DOI: https://doi.org/10.1007/s40544-019-0330-2

Karakus M, Perez S. Acoustic emission analysis for rockbit interactions in impregnated diamond core drilling. Int J Rock Mech Min Sci. 2014; 68:36-43. https://doi. org/10.1016/j.ijrmms.2014.02.009 DOI: https://doi.org/10.1016/j.ijrmms.2014.02.009

Khoshouei M, Bagherpour R. Predicting the geomechanical properties of hard rocks using analysis of the acoustic and vibration signals during the drilling operation. Geotech Geol Eng. 2021; 39(3):2087-99. https://doi.org/10.1007/s10706-020-01611-z DOI: https://doi.org/10.1007/s10706-020-01611-z

Piri M, Mikaeil R, Hashemolhosseini H, Baghbanan A, Ataei M. Study of the effect of drill bits hardness, drilling machine operating parameters and rock mechanical parameters on noise level in hard rock drilling process. Meas J Int Meas Confed. 2021; 167. https://doi. org/10.1016/j.measurement.2020.108447 DOI: https://doi.org/10.1016/j.measurement.2020.108447

Márquez MBS, Boussaada I, Mounier H, Niculescu SI. Analysis and control of oilwell drilling vibrations; 2015. p. 9–24. https://doi.org/10.1007/978-3-319-15747-4_2 DOI: https://doi.org/10.1007/978-3-319-15747-4_2

Gradl S, Kugler P, Lohmuller C, Eskofier B. Realtime ECG monitoring and arrhythmia detection using Android-based mobile devices. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2012; 2452- 55. https://doi.org/10.1109/EMBC.2012.6346460 PMid:23366421 DOI: https://doi.org/10.1109/EMBC.2012.6346460

Tian J, Li G, Dai L, Yang L, He H, Hu S. Torsional vibrations and nonlinear dynamic characteristics of drill strings and stick-slip reduction mechanism. J Comput Nonlinear Dyn. 2019; 14(8). https://doi. org/10.1115/1.4043564 DOI: https://doi.org/10.1115/1.4043564

Carlsson TE, Strand F, Lindstrom B. A statistical model for prediction of tool life as a basis for economical optimization of the cutting process. CIRP Ann - Manuf Technol 1992; 41(1):79-82. https://doi.org/10.1016/ S0007-8506(07)61157-3 DOI: https://doi.org/10.1016/S0007-8506(07)61157-3

Wang KS, Lin WS, Hsu FS. A new approach for determining the reliability of a cutting tool. Int J Adv Manuf Technol. 2001; 17(10):705-9. https://doi. org/10.1007/s001700170114 DOI: https://doi.org/10.1007/s001700170114

Klim Z, Ennajimi E, Balazinski M, Fortin C. Cutting tool reliability analysis for variable feed milling of 17-4PH stainless steel. Wear. 1996; 195(1-2):206-13. https://doi. org/10.1016/0043-1648(95)06863-5 DOI: https://doi.org/10.1016/0043-1648(95)06863-5

Ding F, He Z. Cutting tool wear monitoring for reliability analysis using proportional hazards model. Int J Adv Manuf Technol. 2011; 57(5-8):565-74. https://doi. org/10.1007/s00170-011-3316-4 DOI: https://doi.org/10.1007/s00170-011-3316-4

Patiño CE, Souza GFM. Reliability concepts applied to cutting tool change time. Reliab Eng Syst Saf. 2010; 95(8):866-73. https://doi.org/10.1016/j.ress.2010.03.005 DOI: https://doi.org/10.1016/j.ress.2010.03.005

Vagnorius Z, Rausand M, Sørby K. Determining optimal replacement time for metal cutting tools. Eur J Oper Res. 2010; 206(2):407-16. https://doi.org/10.1016/j. ejor.2010.03.023 DOI: https://doi.org/10.1016/j.ejor.2010.03.023

Salonitis K, Kolios A. Reliability assessment of cutting tool life based on surrogate approximation methods. Int J Adv Manuf Technol. 2014; 71(5-8):1197-208. https:// doi.org/10.1007/s00170-013-5560-2 DOI: https://doi.org/10.1007/s00170-013-5560-2

Barabadi A, Barabady J, Markeset T. Application of reliability models with covariates in spare part prediction and optimization - A case study. 2014; 123:1-7. https:// doi.org/10.1016/j.ress.2013.09.012 DOI: https://doi.org/10.1016/j.ress.2013.09.012

McGehee DY, et al. The IADC roller bit dull grading system. 1992. https://doi.org/10.2523/23938-MS PMCid:PMC442840 DOI: https://doi.org/10.2523/23938-MS

Beste U, Hartzell T, Engqvist H, Axén N. Surface damage on cemented carbide rock-drill buttons. Wear. 2001; 249(3-4):324-9. https://doi.org/10.1016/S0043- 1648(01)00553-1 DOI: https://doi.org/10.1016/S0043-1648(01)00553-1

Olovsjö S, Johanson R, Falsafi F, Bexell U, Olsson M. Surface failure and wear of cemented carbide rock drill buttons – The importance of sample preparation and optimized microscopy settings. Wear. 2013; 302(1- 2):1546-54. https://doi.org/10.1016/j.wear.2013.01.078 DOI: https://doi.org/10.1016/j.wear.2013.01.078

Kong C, Liang Z, Zhang D. Failure analysis and optimum structure design of PDC cutter. Mechanika. 2017; 23(4):567-73. https://doi.org/10.5755/j01. mech.23.4.14932 DOI: https://doi.org/10.5755/j01.mech.23.4.14932

Kumar U, Klefsjö B. Reliability analysis of hydraulic systems of LHD machines using the power law process model. Reliab Eng Syst Saf. 1992; 35(3):217-24. https:// doi.org/10.1016/0951-8320(92)90080-5 DOI: https://doi.org/10.1016/0951-8320(92)90080-5

Hall RA, Daneshmend LK. Reliability modelling of surface mining equipment: Data gathering and analysis methodologies. Int J Surf Mining, Reclam Environ. 2003; 17(3):139-55. https://doi.org/10.1076/ ijsm. DOI: https://doi.org/10.1076/ijsm.

Signoret JP, Leroy A. Failure mode, effects (and criticality) analysis, FME(C)A. Springer Ser Reliab Eng. 2021; 165-72. https://doi.org/10.1007/978-3-030-64708- 7_10 DOI: https://doi.org/10.1007/978-3-030-64708-7_10

Demirel N, Gölbası O. Preventive replacement decisions for dragline components using reliability analysis. Minerals. 2016; 6(2). https://doi.org/10.3390/ min6020051 DOI: https://doi.org/10.3390/min6020051

Badri A, Nadeau S, Gbodossou A. A new practical approach to risk management for underground mining project in Quebec. J Loss Prev Process Ind. 2013; 36(6):1145-58. https://doi.org/10.1016/j.jlp.2013.04.014 DOI: https://doi.org/10.1016/j.jlp.2013.04.014

Angseryd J, From A, Wallin J, Jacobson S, Norgren S. On a wear test for rock drill inserts. Wear. 2013; 301(1- 2):109-15. https://doi.org/10.1016/j.wear.2012.10.023 DOI: https://doi.org/10.1016/j.wear.2012.10.023

Konyashin I, Ries B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part II: Laboratory performance tests on rock cutting and drilling. Int J Refract Met Hard Mater. 2014; 45:230-7. https://doi.org/10.1016/j.ijrmhm.2014.04.017 DOI: https://doi.org/10.1016/j.ijrmhm.2014.04.017

Wallin J. Tribological testing of rotary drill bit inserts. Uppsala Universitet; 2012. 55. Saito H, Iwabuchi A, Shimizu T. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear. 2006; 261(2):126-32. https://doi.org/10.1016/j. wear.2005.09.034 DOI: https://doi.org/10.1016/j.wear.2005.09.034

Oskarsson J. Tribological testing of rotary drill bit inserts. Uppsala Universitet; 2012.

Gant AJ, Gee MG, Roebuck B. Rotating wheel abrasion of WC/Co hardmetals. Wear. 2005; 258(1-4):178-88. https://doi.org/10.1016/j.wear.2004.09.028 DOI: https://doi.org/10.1016/j.wear.2004.09.028

Günen A. Micro-abrasion wear behavior of thermalspray- coated steel tooth drill bits. Acta Phys Pol A. 2016; 130(1):217-22. https://doi.org/10.12693/ APhysPolA.130.217 DOI: https://doi.org/10.12693/APhysPolA.130.217

Teii K, Hori T, Matsumoto S. Enhanced deposition of cubic boron nitride films on roughened silicon and tungsten carbide-cobalt surfaces. Thin Solid Films. 2011; 519(6):1817-20. https://doi.org/10.1016/j. tsf.2010.10.017 DOI: https://doi.org/10.1016/j.tsf.2010.10.017

Mrochek I, Günzel R, Matz W, Möller W, Anishchik V. Implantation of boron ions into hard metals. Nukleonika. 1999; 44(2):217-24.

Yu LD, Shuy GW, Vilaithong T. Friction modification of WC-Co by ion implantation. Surf Coatings Technol. 2000; 128-129:404-9. https://doi.org/10.1016/S0257- 8972(00)00642-3 DOI: https://doi.org/10.1016/S0257-8972(00)00642-3

Kolitsch A, Richter E. Change of microhardness on ion implanted tungsten carbide. Cryst Res Technol. 1983; 18(1):K5-7. https://doi.org/10.1002/crat.2170180122 DOI: https://doi.org/10.1002/crat.2170180122

Kupczyk MJ, Michalski A, Siwak P, Rosinsk M. Evaluation of cutting edges made of nanocrystalline cemented carbides sintered by the pulse plasma method. ASTM Spec Tech Publ. 2012; 1532:313-26. https://doi. org/10.1520/STP153220120022 DOI: https://doi.org/10.1520/STP49440T

Da Silva WM, Suarez MP, Machado AR, Costa HL. Effect of laser surface modification on the micro-abrasive wear resistance of coated cemented carbide tools. Wear. 2013; 30(1-2):1230-40. https://doi.org/10.1016/j. wear.2013.01.035 DOI: https://doi.org/10.1016/j.wear.2013.01.035

Berger LM. Application of hardmetals as thermal spray coatings. Int J Refract Met Hard Mater. 2015; 49(1):350- 64. https://doi.org/10.1016/j.ijrmhm.2014.09.029 DOI: https://doi.org/10.1016/j.ijrmhm.2014.09.029

PalDey S, Deevi SC. Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater Sci Eng A. 2003; 342(1-2):58-79. https://doi.org/10.1016/S0921- 5093(02)00259-9 DOI: https://doi.org/10.1016/S0921-5093(02)00259-9

Bryant W, Santhanam A. Coated cutting tool having an outer layer of TiC. US Pat. 2008; 5:750.

Alahelisten A. Abrasion of hot flame-deposited diamond coatings. Wear. 1995; 185(1-2):213-24. https://doi. org/10.1016/0043-1648(95)06618-7 DOI: https://doi.org/10.1016/0043-1648(95)06618-7

Yahiaoui M, Paris JY, Denape J, Colin C, Ther O, Dourfaye A. Wear mechanisms of WC-Co drill bit inserts against alumina counterface under dry friction: Part 2 - Graded WC-Co inserts. Int J Refract Met Hard Mater. 2015; 48:65-73. https://doi.org/10.1016/j.ijrmhm.2014.07.024 DOI: https://doi.org/10.1016/j.ijrmhm.2014.07.024

Janssen MKKZSG. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance. US 7493,973 B2; 2009.

Ederyd SSO. Cemented carbide body, for rock drilling mineral cutting and highway engineering. U.S. Patent No. 5,718,948; 1998.

Bellin F, Dourfaye A, King W, Thigpen M. The current state of PDC bit technology. World Oil. 2010; 231(11):67- 71.

Piri M, Hashemolhosseini H, Mikaeil R, Ataei M, Baghbanan A. Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. Int J Refract Met Hard Mater. 2020; 87. https://doi.org/10.1016/j. ijrmhm.2019.105113 DOI: https://doi.org/10.1016/j.ijrmhm.2019.105113

Cobb T, Scott D, Nelms D. Superior quality diamond heel inserts improve cutting structure and seal life in abrasive and directional applications. Soc Pet Eng - Can Unconv Resour Conf. 2011, CURC 2011. 2011; 1:123-7. https://doi.org/10.2118/146058-MS DOI: https://doi.org/10.2118/146058-MS

Mohsen S, Arezoo B, Dastres R. Machine learning and artificial intelligence in CNC machine tools: A review. Sustainable Manufacturing and Service Economics. 2023; 100009. https://doi.org/10.1016/j. smse.2023.100009 DOI: https://doi.org/10.1016/j.smse.2023.100009

Peter B, et al. Drilling in the digital age: Machine learning assisted bit selection and optimization. International Petroleum Technology Conference. IPTC; 2021.

Simon C, Vazquez G. Use of big data and machine learning to optimise operational performance and drill bit design. SPE Asia Pacific Oil and Gas Conference and Exhibition. SPE; 2020.

Yashodhan G, Purwanto A, Bits S. Artificial neural network drilling parameter optimization system improves ROP by predicting/managing bit wear. SPE Intelligent Energy International Conference and Exhibition. SPE; 2012.

Christopher J, Creegan A. Adaptive drilling application uses AI to enhance on-bottom drilling performance. Journal of Petroleum Technology 72.08. 2020:45-7. https://doi.org/10.2118/0820-0045-JPT DOI: https://doi.org/10.2118/0820-0045-JPT

Emad J, Mostafavi H. Soft computation application to optimize drilling bit selection utilizing virtual inteligence and genetic algorithms. IPTC 2013: International Petroleum Technology Conference. European Association of Geoscientists and Engineers; 2013.

Jonathan D, et al. Increased rate of penetration through automation. SPE/IADC Drilling Conference and Exhibition. OnePetro; 2011.