Experimental Investigation of the Effect of Integrated Fins on Heat Transfer Rate of Double Pipe Heat Exchanger

Jump To References Section

Authors

  • Dept. of Mechanical Engineering, Vidyavardhaka College of Engineering Mysuru 570002 ,IN
  • Dept. of Mechanical Engineering, Vidyavardhaka College of Engineering Mysuru 570002 ,IN
  • Dept. of Mechanical Engineering, Vidyavardhaka College of Engineering Mysuru 570002 ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32939

Keywords:

Mass flow rate, Coefficient of heat transfer, Heat transfer rate, LMTD, Counterflow.

Abstract

In this paper, the effects of integrated fins on the thermal performance of the concentric tube heat exchanger with a variable flow rate of hot and cold water are discussed. The inner pipe is made of copper pipe of length = 800 mm, OD=30 mm, ID=26 mm, t=2 mm. the integrated fines of the geometry 1.25 mm and 1.5 mm pitch length, 1 mm of the depth of cut are considered in the study. The thermal performance of the heat exchanger with a flow rate of hot and cold fluids ranges from 0.014 kg s- 1 to 0.07 kg s-1 and the effects of parallel and counter flow direction are also discussed in detail. The experimental result confirms that the thermal performance of the concentric tube heat exchanger is more in the case of the tube with integrated fins and counter flow direction with the highest flow rate of water in the pipe and annulus of the heat exchanger.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-15

How to Cite

B M, P., Sadashive Gowda, B., & H V, N. (2023). Experimental Investigation of the Effect of Integrated Fins on Heat Transfer Rate of Double Pipe Heat Exchanger. Journal of Mines, Metals and Fuels, 70(10A), 396–404. https://doi.org/10.18311/jmmf/2022/32939

 

References

Andaç Batur Çolak, H. Mercan and S. Wongwises. Prediction of heat transfer coefficient, pressure drop, and overall cost of double-pipe heat exchangers using the artificial neural network. Case Studies in Thermal Engineering 39 (2022) 102391 DOI: https://doi.org/10.1016/j.csite.2022.102391

R. Thejaraju, K. B. Girisha, S. H. Manjunath, and B. S. Dayananda. Experimental investigation of turbulent flow behaviour in an air-to-air double pipe heat exchanger using novel para winglet tape. Case Studies in Thermal Engineering 22 (2020) 100791 DOI: https://doi.org/10.1016/j.csite.2020.100791

B. K. Dandoutiya and A. Kumar, W-cut twisted tape’s effect on the thermal performance of a double pipe heat exchanger: A numerical study. Case Studies in Thermal Engineering 34 (2022) 102031 DOI: https://doi.org/10.1016/j.csite.2022.102031

M. A. M. Ali, W. M. El-Maghlany, Y. A. Eldrainy, and A. Attia. Heat transfer enhancement of double pipe heat exchanger using rotating of variable eccentricity inner pipe. Alexandria Engineering Journal (2018) 57, 3709–3725. DOI: https://doi.org/10.1016/j.aej.2018.03.003

A. El Maakoul, K. Feddi, S. Saadeddine, A. Ben Abdellah, and M. El Metoui, Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy Convers. Manag. 210 (2019) 112710. DOI: https://doi.org/10.1016/j.enconman.2020.112710

D. Huu-Quan, A. Mohammad Rostami, M. Shokri Rad, M. Izadi, A. Hajjar, and Q. Xiong. 3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe.Applied Thermal Engineering. 182 (2020) 116106. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116106

S. M. S. Mousavi and S. M. A. Alavi. Experimental and numerical study to optimize flow and heat transfer of airfoil-shaped turbulators in a double-pipe heat exchanger. Applied Thermal Engineering. 215 (2022) 118961. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118961

Smith Eiamsa-ard, Chinaruk Thianpong, Somsak Pethkool, Pongjet Promvonge, Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. International Communications in Heat and Mass Transfer 35 (2008) 120–129 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003

A. T. Wijayanta, I. Yaningsih, M. Aziz, T. Miyazaki, and S. Koyama, Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. . Applied Thermal Engineering. 145 (2018) 27–37. DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.009

Pongjet Promvonge, Monsak Pimsarn, Somsak Pethkool, Chinaruk Thianpong, Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts. International Communications in Heat and Mass Transfer 39 (2012) 953–959. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.05.015

H. Shabgard, M.J. Allen, N. Sharifi, S.P. Benn, A. Faghri, T.L. Bergman, Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art, Int. J. Heat Mass Tran. 89 (2015) 138–158. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020

S. Liu, M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers, Renew. Sustain. Energy Rev. 19 (2013) 64–81 DOI: https://doi.org/10.1016/j.rser.2012.11.021

Xiaoyu Zhang, Wei Liu, Zhichun Liu, Numerical studies on heat transfer and friction factor characteristics of a tube fitted with helical screw-tape without core-rod inserts. International Journal of Heat and Mass Transfer. 60 (2013) 490–498. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041

TuWenbin, Lu Longsheng, Tang Yong, Zhou Bo, Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube with small pipe inserts. International Communications in Heat and Mass Transfer. 56 (2014) 1–7. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2014.04.020

E. Esmaeilzadeh, A.N. Omrani, H. Almohammadi, A.Nokhosteen, A. Motezaker, Study on heat transfer and friction factor characteristics of g-Al2O3/water through circular tube with twisted tape inserts with different thicknesses. International Journal of Thermal Sciences. 82 (2014)72-83. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.03.005

A.T. Wijayanta, T. Istanto, K. Kariya, and A. Miyara, Heat transfer enhancement of internal flow by inserting punched delta winglet vortex generators with various attack angles. Experimental Thermal Fluid Science.87 (2017) 141–148. DOI: https://doi.org/10.1016/j.expthermflusci.2017.05.002

H. Bas and V. Ozceyhan, Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Experimental Thermal Fluid Science. 41 (2012) 51–58.

S. Al-Fahed, L. M. Chamra, and W. Chakroun, Pressure drop and heat transfer comparison for both microfine tube and twisted-tape inserts in laminar flow.Experimental Thermal Fluid Science. 18 (1998) 323333. DOI: https://doi.org/10.1016/S0894-1777(98)10037-7

D. Kumar, A. K. Patil, and M. Kumar, Experimental investigation of heat transfer and fluid flow in a circular tube with lanced ring insert. Experimental Heat Transfer. 33 (2020) 560–571. DOI: https://doi.org/10.1080/08916152.2019.1691086

V. Ozceyhan, S. Gunes, O. Buyukalaca, and N.Altuntop, Heat transfer enhancement in a tube using circular cross-sectional rings separated from the wall.Applied Energy. 85 (2008) 988-1001. DOI: https://doi.org/10.1016/j.apenergy.2008.02.007

S. Gunes, V. Ozceyhan, and O. Buyukalaca, The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separately from the tube wall. Applied Thermal Engineering. 30 (2010) 1719-1725. DOI: https://doi.org/10.1016/j.applthermaleng.2010.04.001

M. A. Akhavan-Behabadi, R. Kumar, M. R. Salimpour, and R. Azimi, Pressure drop and heat transfer augmentation due to coiled wire inserts during the laminar flow of oil inside a horizontal tube.International Journal of Thermal Science. 49 (2010)373–379. DOI: https://doi.org/10.1016/j.ijthermalsci.2009.06.004

M. Hojjat, S. G. Etemad, R. Bagheri, and J. Thibault,Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat Mass Transfer. 47 (2011) 203–209. DOI: https://doi.org/10.1007/s00231-010-0710-7

H. Bas and V. Ozceyhan, Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Experimental Thermal Fluid Science. 41 (2012) 51–58. DOI: https://doi.org/10.1016/j.expthermflusci.2012.03.008

S. Saha and S. K. Saha, Enhancement of heat transfer of laminar flow through a circular tube having integral helical rib roughness and fitted with wavy strip inserts. Experimental Thermal Fluid Science. 50 (2013) 107–113. DOI: https://doi.org/10.1016/j.expthermflusci.2013.05.010

V. Mathanraj, V. Leela Krishna, J. L. Venkanna Babu, and S. Arul Kumar, Experimental investigation on heat transfer in double pipe heat exchanger employing triangular fins. IOP Conference Series Material Science. 402 (2018) 012137. DOI: https://doi.org/10.1088/1757-899X/402/1/012137

Most read articles by the same author(s)