Hepatotoxicity of Short Term Exposure to Mancozeb Fungicide in Male Wistar Rats

Jump To References Section

Authors

  • Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323 ,NG
  • Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Port Harcourt, East-West Road, Choba, Rivers State, PMB 5323 ,NG

DOI:

https://doi.org/10.18311/ti/2022/v29i3/29893

Abstract

Mancozeb is a dithiocarbamate fungicide used effectively to protect plant products against fungi. The hepatic effects of short term exposure to mancozeb in adult male Wistar rats were investigated in the present study. Twenty-four animals were divided into four equal groups. Two groups were administered mancozeb (60 mg/kg body weight as single dose or 30 mg/kg body weight daily for 10 days, intraperitoneally), and the others, which served as control groups, received normal saline. Liver biochemical parameters in plasma were measured using standard methods. Liver homogenates were analysed for oxidative stress biomarkers and liver histopathology was studied. Single dose and 10 days exposures of mancozeb caused elevation in the activities of Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP), Lactate Dehydrogenase (LDH), and Gamma Glutamyl Transpeptidase (GGT) in plasma (p<0.05-0.001) compared with control. Mancozeb also caused elevation in the plasma level of total bilirubin, and reductions in albumin, total protein, and conjugated bilirubin. In addition, Malondialdehyde (MDA) and Advanced Oxidation Protein Product (AOPP) levels were increased in hepatic tissues (p<0.001) of all mancozeb exposed rats. Furthermore, hepatic levels of protein, reduced Glutathione (GSH) and vitamin C were decreased (p<0.01), together with the activities of Superoxide Dismutase (SOD), catalase, and Glutathione Peroxidase (GPx) enzymes (p<0.01-0.001). Histological analysis showed severe histopathological changes in mancozeb exposed rats. The results demonstrated that single dose intraperitoneal exposure of mancozeb (60 mg/kg body weight) or short term (10 days) daily exposure at 30 mg/kg body weight is capable of causing hepatotoxic effects in rats.

Downloads

Download data is not yet available.

Published

2022-12-12

How to Cite

Aprioku, J. S., & Asa, Y. R. (2022). Hepatotoxicity of Short Term Exposure to Mancozeb Fungicide in Male Wistar Rats. Toxicology International, 29(3), 405–416. https://doi.org/10.18311/ti/2022/v29i3/29893

Issue

Section

Research Articles
Received 2022-03-29
Accepted 2022-05-23
Published 2022-12-12

 

References

Fatma F, Verma S, Kamal A, Srivastava A. Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere. 2017; 30:1–7. https://doi.org/10.1016/j.chemosphere.2017.12.052. PMid:29273330. DOI: https://doi.org/10.1016/j.chemosphere.2017.12.052

Manalu JN, Soekamo PBW, Tondok ET, Surono S. Isolation and capability of dark septate endophyte against mancozeb fungicide. Jurnal Ilmu Pertanian Indonesia. 2020; 25(2):193–8. https://doi.org/10.18343/jipi.25.2.193. DOI: https://doi.org/10.18343/jipi.25.2.193

López-Fernández O, Pose-Juan E, Rial-Otero R, Simal- Gándara J. Effects of hydrochemistry variables on the half-life of mancozeb and on the hazard index associated to the sum of mancozeb and ethylenethiourea. Environ Res. 2017; 154:253–60. https://doi.org/10.1016/j. envres.2017.01.016 PMid:28110212. DOI: https://doi.org/10.1016/j.envres.2017.01.016

Pirozzi AVA, Stellavato A, La Gatta A, Lamberti M, Schiraldi C. Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model. Toxicol Lett. 2016; 249:1–4. https://doi.org/10.1016/j.toxlet.2016.03.004. PMid:27016407. DOI: https://doi.org/10.1016/j.toxlet.2016.03.004

Devi R, Sharma SP, Kumari A. Pesticides contamination in potatoes and associated health risk to population with respect detection limits. Int J Food Sci Nutr. 2018; 3(5):144–7.

Mandarapu R, Prakhya BM. In vitro myelotoxic effects of cypermethrin and mancozeb on human hematopoietic progenitor cells. J Immunotoxicol. 2015; 12(1):48–55. https://doi.org/10.3109/15476 91X.2014.880535. PMid:24499300. DOI: https://doi.org/10.3109/1547691X.2014.880535

Kimaro WH, Kipanyula MJ. Ethylene bisdithiocarbamate (mancozeb®) affects the haematological parameters in domestic fowl (gallus gallus domesticus). Tanzan Vet J. 2017; 32(1):117–22. .

Domico LM, Zeevalk GD, Bernard LP, Cooper KR. Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction. Neurotoxicology. 2006; 27(5):816–25. https://doi.org/10.1016/j. neuro.2006.07.009. PMid:16889834. DOI: https://doi.org/10.1016/j.neuro.2006.07.009

Srivastava AK, Mishra S, Ali W, Shukla Y. Protective effects of lupeol against mancozeb-induced genotoxicity in cultured human lymphocytes. Phytomedicine. 2016; 23(7):714–24. https://doi.org/10.1016/j.phymed. 2016.03.010. PMid:27235710. . DOI: https://doi.org/10.1016/j.phymed.2016.03.010

Weis GCC, Assmann CE, Cadoná FC, Bonadiman BDR, Alves AD, Machado AK, Duarte MMMF, da Cruz IBM, Costabeber IH. Immunomodulatory effect of mancozeb, chlorothalonil, and thiophanate methyl pesticides on macrophage cells. Ecotoxicol Environ Saf 2019; 182:109420. https://doi.org/10.1016/j. ecoenv.2019.109420. PMid:31299472. DOI: https://doi.org/10.1016/j.ecoenv.2019.109420

Mughal BB, Fini J, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 2018; 7(4):160. https://doi.org/10.1530/EC-18- 0029. PMid:29572405. PMCid:PMC5890081. DOI: https://doi.org/10.1530/EC-18-0029

Kackar R, Srivastava MK, Raizada RB. Assessment of toxicological effects of mancozeb in male rats after chronic exposure. Indian J Exp Biol. 1999; 37:553–9.

Yahia E, Aiche MA, Chouabbia A, Boulakoud MS. Biochemical and hematological changes following long term exposure to mancozeb. Adv Biores. 2015; 6(2):83– 6.

Yahia D, El-Almir YO, Rushidi M. Mancozeb fungicideinduced genotoxic effects, metabolic alterations, and histological changes in the colon and liver of Sprague Dawley rats. Toxicol Ind Health 2019; 35(4):265- 76. https://doi.org/10.1177/0748233719834150 PMid:30983557. DOI: https://doi.org/10.1177/0748233719834150

Roede JR, Miller GW. Mancozeb. In: Wexler P, editors. Encyclopedia in toxicology. 3rd ed. New York: Academic Press; 2014. https://doi.org/10.1016/B978-0-12-386454- 3.00157-3.

Edwards IR, Ferry DG, Temple WA. Fungicides and related compounds. In: Hayes Jr WJ, Laws Jr ER, editors. Handbook of pesticide toxicology. New York: Academic Press; 1991.

U.S. Environmental Protection Agency. Ethylene bisdithiocarbamates (EBDCs); Notice of intent to cancel and conclusion of Special Review. Fed Regist. 1992; 57:7434– 530.

Goldoni A, Klauck CR, Da Silva ST, Da Silva MD, Ardenghi PG, Da Silva LB. DNA damage in Wistar rats exposed to dithiocarbamate pesticide mancozeb. Folia Biol (Praha). 2014; 60(4):202–4. PMID: 25152054.

CCAC, Canadian Council on Animal Care. Guidelines on the care and use of farm animals in research, teaching and testing. Ottawa ON: CCAC; 2009.

Lowry OH, Rosebrugh NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–75. https://doi.org/10.1016/ S0021-9258(19)52451-6. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Reitman S, Frankel SA. Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol. 1957; 28:56–63. https://doi.org/10.1093/ajcp/28.1.56. PMid:13458125. DOI: https://doi.org/10.1093/ajcp/28.1.56

Babson AL, Greeley SJ, Coleman CM, Phillips GE. Phenolphthalein monophosphate as a substrate for serum alkaline phosphatase. Clin Chem. 1966; 12:482–90. https://doi.org/10.1093/clinchem/12.8.482. PMid:5917856. DOI: https://doi.org/10.1093/clinchem/12.8.482

Burd JF, Usategui-Gomez M. A colorimetric assay for serum lactate dehydrogenase. Clin Chim Acta. 1973; 46(3):223–37. https://doi.org/10.1016/0009- 8981(73)90174-5. DOI: https://doi.org/10.1016/0009-8981(73)90174-5

Tietz NW. Textbook of clinical chemistry. Philadelphia, PA: WB Saunders; 1986.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52:302–10. https://doi. org/10.1016/S0076-6879(78)52032-6. DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996; 49:1304–13. https://doi.org/10.1038/ki.1996.186. PMid:8731095. DOI: https://doi.org/10.1038/ki.1996.186

Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121–6. https://doi.org/10.1016/S0076- 6879(84)05016-3. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 1978; 90(1):81–9. https:// doi.org/10.1016/0003-2697(78)90010-6. DOI: https://doi.org/10.1016/0003-2697(78)90010-6

Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984; 105:114–21. https://doi. org/10.1016/S0076-6879(84)05015-1. DOI: https://doi.org/10.1016/S0076-6879(84)05015-1

Brehe JE, Burch HB. Enzymatic assay of glutathione. Anal Biochem. 1976; 74(1):189–97. https://doi. org/10.1016/0003-2697(76)90323-7. DOI: https://doi.org/10.1016/0003-2697(76)90323-7

Angirekula S, Atti L, Atti S. Estimation of serum ascorbic acid (vitamin C) in the age related (senile) cataract: a case control study. Ann Clin Lab Res. 2018; 6(1):217. https://doi.org/10.21767/2386-5180.1000217. DOI: https://doi.org/10.18203/2320-6012.ijrms20180610

Sakr SA. Ameliorative effect of ginger (Zingiber officinale) on mancozeb fungicide induced liver injury in albino rats. Aust J Basic Appl Sci. 2007; 1(4):650–6.

Singh A, Bhat TK. Sharma OP. Clinical biochemistry of hepatotoxicity. J Clinic Toxicol. 2011; S4:001. https://doi. org/10.4172/2161-0495.S4-001.

Tonomura Y, Kato Y, Hanafusa H, Morikawa Y, Matsuyama K, Uehara T, et al. Diagnostic and predictive performance and standardized threshold of traditional biomarkers for drug-induced liver injury in rats. J Appl Toxicol. 2015; 35(2):165–72. https://doi.org/10.1002/ jat.3053. PMid:25186495. DOI: https://doi.org/10.1002/jat.3053

Gowda S, Desai PB, Hull VV, Math AAK, Vernekar SN, Kulkarni SS. A review on laboratory liver function tests. Pan Afr Med J. 2009; 3:17.

Honnamurthy JB, Shivashankara AR, Avinash SS, JohnMathai P, Malathi M. Biochemical markers of liver function in smoking and non-smoking alcohol-dependent males. J Clin Diagnostic Res. 2018; 12(5):BC01–06. https://doi.org/10.7860/JCDR/2018/34117.11485. DOI: https://doi.org/10.7860/JCDR/2018/34117.11485

Sefi M, Elwej A, Chaaˆbane M, Bejaoui S, Marrekchi R, Jamoussi K, et al. Beneficial role of vanillin, a polyphenolic flavoring agent, on maneb-induced oxidative stress, DNA damage, and liver histological changes in Swiss albino mice. Hum Exp Toxicol. 2019; 38(6):619– 31. https://doi.org/10.1177/0960327119831067. PMid:30782018. DOI: https://doi.org/10.1177/0960327119831067

Stoll B, Gerok W, Lang F, Häussinger D. Liver cell volume and protein synthesis. Biochem J. 1992; 287(Pt 1):217– 22. https://doi.org/10.1042/bj2870217 PMid:1329728. PMCid:PMC1133146. DOI: https://doi.org/10.1042/bj2870217

Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003; 333(1):19–39. https://doi. org/10.1016/S0009-8981(03)00200-6. DOI: https://doi.org/10.1016/S0009-8981(03)00200-6

Forman HJ, Zhang H, Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009; 30(1–2):1–12. https:// doi.org/10.1016/j.mam.2008.08.006. PMid:18796312. PMCid:PMC2696075. DOI: https://doi.org/10.1016/j.mam.2008.08.006

Cathcart RF 3rd. Vitamin C: The nontoxic, nonrate-limited, antioxidant free radical scavenger. Med Hypotheses. 1985; 18(1):61–77. https://doi.org/10.1016/0306- 9877(85)90121-5. DOI: https://doi.org/10.1016/0306-9877(85)90121-5

Lenaz G. The mitochondrial production of reactive oxygen species: Mechanisms and implications in human pathology. IUBMB Life. 2001; 52(3–5):159–64. https:// doi.org/10.1080/15216540152845957. PMid:11798028. DOI: https://doi.org/10.1080/15216540152845957

Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000; 153(2–3):83–104. https://doi. org/10.1016/S0300-483X(00)00306-1. DOI: https://doi.org/10.1016/S0300-483X(00)00306-1

Aprioku JS. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil. 2013; 14(4):158–72. PMID: 24551570. PMCID: PMC3911811.

Ighodaro OM, Akinloye OA. First line defence antioxidants- superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4):287–93. https://doi.org/10.1016/j. ajme.2017.09.001. DOI: https://doi.org/10.1016/j.ajme.2017.09.001

Grosicka-Maciąg E, Kurpios-Piec D, Szumiło M, Grzela T, Rahden-Staroń I. Dithiocarbamate fungicide zineb induces oxidative stress and apoptosis in Chinese hamster lung fibroblasts. Pestic Biochem Physiol. 2012; 102(1):95–101. https://doi.org/10.1016/j. pestbp.2011.11.003 DOI: https://doi.org/10.1016/j.pestbp.2011.11.003