Correlation between BOD/COD Ratio and Octanol/Water Partition Coefficient for Mixture Organic Compounds

Jump To References Section

Authors

  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID
  • 1Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID
  • 1Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID
  • Department of Biology, Faculty of Science, Institute Teknologi Sepuluh Nopember, Sukolilo – 60111, Surabaya ,ID

DOI:

https://doi.org/10.18311/ti/2022/v29i3/29141

Keywords:

BOD/COD Ratio, Daphnia magna, Mixture of Organic Compounds, Octanol/Water Partition Coefficient, Toxicity Test

Abstract

Correlation between the BOD/COD ratio and Partition coefficient of octanol/ water (Pow) on a single organic substance shows that the Pow value is directly proportional to the toxicity level and inversely proportional to BOD/COD ratio. This research examined the correlation to a mixture of organic substances. The objective is to obtain a varied range of substances, as well as determining the quality of wastewater discharging to fresh waters. Need for analysis of organic substances used as antiseptics during the Covid-19 pandemic. In addition, organic substances from the organophosphate pesticide class, diazinon, were used. BOD5, COD, Pow, and LC50-96h toxicity tests using Daphnia magna were used. Six types of the mixture of organic substances included diazinon-formaldehyde-isopropyl alcohol, ethanol-oxalic acid-formaldehyde, isopropyl alcohol-glycerol-lactose, acetic acid-isopropyl alcohol-formaldehyde, sucrose-glycerol-acetic acid, and oxalic acid-formaldehyde-diazinon, with 3 different concentrations of 10, 100, and 1000 mg/L, three repetitions. The lowest BOD/COD ratio (<0.2) and the highest Pow value (>4) are found in diazinon-formaldehyde-IPA. Its toxicity in D. magna also showed the lowest LC-50 (11.82 mg/L). Whereas, sucrose-glycerol-acetic acid had the highest BOD/COD ratio (>0.7) and lowest Pow (<0.7) with the highest LC- 50 (567.88 mg/L). Other organic substances mixtures have characteristics in the range of these mixtures. Pow variability and the BOD/COD ratio have a negative correlation. A mixture of organic matter is more biodegradable making it has a higher tendency to dissolve in water.

Downloads

Download data is not yet available.

Published

2022-12-12

How to Cite

Al-Rosyid, L. M., Santoso, I. B., Titah, H. S., Mangkoedihardjo, S., Trihadiningrum, Y., & Hidayati, D. (2022). Correlation between BOD/COD Ratio and Octanol/Water Partition Coefficient for Mixture Organic Compounds. Toxicology International, 29(3), 329–337. https://doi.org/10.18311/ti/2022/v29i3/29141

Issue

Section

Research Articles
Received 2021-12-15
Accepted 2022-03-30
Published 2022-12-12

 

References

Latifa MAR, Sarwoko M. Relationship between BOD/ COD ratio and octanol/water partition coefficient for glucose, lactose, sucrose, formaldehyde, acetic acid and oxalic acid. Int. J. Civ. Eng. Technol. 2019; 10(1):691-696.

Guo Y, Niu Q, Sugano T, et al. Biodegradable organic matter-containing ammonium wastewater treatment through simultaneous partial nitritation, anammox, denitrification and COD oxidization process. Science of the Total Environment. 2020; 714(4):1-11. https://doi. org/10.1016/j.scitotenv.2020.136740. PMid:32018962. DOI: https://doi.org/10.1016/j.scitotenv.2020.136740

World Health Organization (WHO), Guide to Local Production: WHO-recommended Handrub Formulations Introduction. WHO. 2020; 4(9).

Lin TJ. Epidemiology of organophosphate pesticide poisoning in Taiwan. Clin. Toxicol. 2018; 46(9):794- 801. https://doi.org/10.1080/15563650801986695. PMid:18608266 DOI: https://doi.org/10.1080/15563650801986695

Yeni MM, Aniesa F. Kromatografi lapis tipis-densitometri untuk analisis residu pestisida diazinon dalam sawi hijau (Brassica juncea L.). Pros. Semin. Nas. Kim. 2019; 149.

Azis T. Analisis residu pestisida diazinon dalam tanaman kubis (Brassica olarecea) menggunakan biosensor elektrokimia secara voltametri siklik. J. Prog. Kim. Sains. 2017; 1(1):32-40.

Latifa MAR, Harmin ST, Irwan BS, Sarwoko M. Review on BOD/COD ratio toxicity to Daphnia magna, artemia salina and brachydanio rerio. Nat. Env. and Poll. Tech. 2021; 20(4):1741-1748. https://doi.org/10.46488/ NEPT.2021.v20i04.039. DOI: https://doi.org/10.46488/NEPT.2021.v20i04.039

Latifa MAR, Sawitri K, Marita, Okta NF. Local tubers diversity in jember district as a support of food security during the covid-19 pandemic. IRJMTS. 2021; 3(6):71- 81.

IPCS. environmental health criteria 89 - Formaldehyde. Int. Program. Chem. Saf. 2019; 257.

Harida S, Sarwoko M. Indoor phytoremediation using decorative plants: An overview of application principles. J. Phytol. 2021; 13:28-32. https://doi.org/10.25081/ jp.2021.v13.6866. DOI: https://doi.org/10.25081/jp.2021.v13.6866

Hornink GG. Biochemistry in the context of Beer Science. Revista de Ensino de Bioquímica. 2019; 17(10):37-49. https://doi.org/10.16923/reb.v17i0.890. DOI: https://doi.org/10.16923/reb.v17i0.890

Kirk-Othmer. Concise encyclopedia of chemical technology. Wiley. 2017; 19(5).

Hewitt PG, Yeh J. Conceptual Integrated Science Chemistry. Pearson Education Inc, San Francisco; 2016. 1-24.

Kim DH, Chon JW, Kim H, et al. Development of a novel selective medium for the isolation and enumeration of acetic acid bacteria from various foods. Food Control. 2019; 106(12):1-5. https://doi.org/10.1016/j. foodcont.2019.106717. DOI: https://doi.org/10.1016/j.foodcont.2019.106717

Pirsaheba M, Ghayebzadeh M, Moradi M, et al. Ratio variations of soluble to total organic matters at different units of a full scale wastewater integrated stabilization pond. J. Chem. Pharm. Res. 2015; 7(5):1326-1332.

Bing Z, Daliang N, Yunfeng Y, et al. Biodegradability of wastewater determines microbial assembly mechanisms in fullscale wastewater treatment plants. Water Research. 2020; 169(1):1-32. https://doi.org/10.1016/j. watres.2019.115276. PMid:31731242. DOI: https://doi.org/10.1016/j.watres.2019.115276

Andrew T, Ian W. Octanol-water partitioning of chemical constituents in river water and treated sewage effluent. Water Res. 2015; 39(18):4325-4334. https://doi. org/10.1016/j.watres.2005.08.009. PMid:16225903. DOI: https://doi.org/10.1016/j.watres.2005.08.009

Mackay D, Shiu WY, Lee SC. Handbook of physicalchemical properties and environmental fate for organic chemicals. CRC Taylor and Francis: Boca Raton, FL. 2016; 3(2).

Pradhan S, Kumar P, Mehrotra I. Sorption of aqueous organics by aquifer material: Correlation of batch sorption parameters with octanol-water partition coefficient. J. Environ. Eng. 2016; 142(8):141-146. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001064. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001064

Pradhan S, Kumar P, Mehrotra I. River pollution: Assessment of hydro-philic and phobic nature of persistent organic contaminants. Environ. Nanotechnology, Monit. Manag. 2014; 3(12): 47-54. https://doi.org/10.1016/j.enmm.2014.12.002. DOI: https://doi.org/10.1016/j.enmm.2014.12.002

Xavier CR, López D, Gómez G, et al. Sensitivity study comparing Daphnia obtusa (Kurz 1874) and Daphnia magna (Straus 1820) exposure to treated Kraft mill effluents, diethylstilbestrol, and androstenedione. BioResources. 2017; 12(3):6558-6567. https://doi. org/10.15376/biores.12.3.6558-6567. DOI: https://doi.org/10.15376/biores.12.3.6558-6567

Senki DG, Latifa MAR, Allief RS. Waste water treatment analysis of soybean industry using wetlands system. IJRPR. 2021; 2(7);291-295.

Villegas-Navarro A, Romero GME, Rosas LE, et al. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environ. Int. 2017; 25(5):619-624. https://doi.org/10.1016/S0160- 4120(99)00034-3. DOI: https://doi.org/10.1016/S0160-4120(99)00034-3

Gholami-Borujeni F, Nejatzadeh-Barandozi F, Aghdasi H. Data on effluent toxicity and physicochemical parameters of municipal wastewater treatment plant using Daphnia magna. Data Br. 2018; 19(6):1837- 1843. https://doi.org/10.1016/j.dib.2018.06.076. PMid:30229056 PMCid:PMC6141377. DOI: https://doi.org/10.1016/j.dib.2018.06.076

Khrystenk D, Kotovska G, Novitskij R. Metabolic potential, respiration rate and their relationship in offspring of different sizes of marble trout (Salmo marmoratus Cuvier). Turkish J. Fish. Aquat. Sci. 2015; 5(15):609-618. https://doi.org/10.4194/1303- 2712-v15_3_04. DOI: https://doi.org/10.4194/1303-2712-v15_3_04

Stoddart G, Hunter W, Halder M, et al. Updates to OECD guidance document 23: Aquatic toxicity testing of difficult substances and mixtures. 2018; 295(1):221- 246. https://doi.org/10.1016/j.toxlet.2018.06.946. DOI: https://doi.org/10.1016/j.toxlet.2018.06.946

U.S. Environmental Protection Agency. Chapter 9: Dissolved oxygen and biochemical oxygen demand. Volunt. Estuary Monit. A Methods Man. 2016; 9(3):9-3.

Hasanah U. Development of COD (Chemical Oxygen Demand) analysis method in waste water using Uv-Vis spectrophotometer. J. Sci. Innovare. 2020; 3(2):35-38. https://doi.org/10.33751/jsi.v3i2.3007. DOI: https://doi.org/10.33751/jsi.v3i2.3007

Sarwoko M, Ganjar S. Research strategy on kenaf for phytoremediation of organic matter and metals polluted soil. Adv. Environ. Biol. 2014; 8(17):64-67.

Badrus Z, Purwanto P, Sarwoko M. Reversible anaerobevapotranspiration process for removal of high strength ammonium in leachate from tropical landfill. Advanced Science Letters. 2017; 23(3):2586-2588. https://doi.org/10.1166/asl.2017.8720. DOI: https://doi.org/10.1166/asl.2017.8720

Irwan BS, Sarwoko M. Mapping cumulative carbon dioxide concentrations at two meters above the ground for greenspace assessment in surabaya. Middle-East Journal of Scientific Research. 2013; 18(3):288-292. https://doi.org/10.5829/idosi.mejsr.2013.18.3.12472.

U. S. E. P. Agency. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms fifth edition. Environ. Prot. 2002; 5(10):266.

Smith S, Lizotte RE, Moore MT. Toxicity assessment of diazinon in a constructed wetland using Hyalella azteca. Bull. Environ. Contam. Toxicol. 2017; 79(1):58- 61. https://doi.org/10.1007/s00128-007-9215-6. PMid:17599226. DOI: https://doi.org/10.1007/s00128-007-9215-6

Bunney PE, Zink AN, Holm AA, et al. Orexin activation counteracts decreases in nonexercise activity thermogenesis NEAT caused by high fat diet. Physiol. Behav. 2017; 176(5):139-148. https://doi.org/10.1016/j.physbeh.2017.03.040. PMid:28363838 PMCid:PMC5510739. DOI: https://doi.org/10.1016/j.physbeh.2017.03.040

Pagliaro M. Glycerol, from ingredient to platform chemical. Chim. Oggi/Chemistry Today. 2018; 36(3):6- 7.

Xiang W, Chen C, Yuring G, et al. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna). Ecotoxicology and Environmental Safety. 2021; 220(1):1- 10. https://doi.org/10.1016/j.ecoenv.2021.112405. PMid:34130182. DOI: https://doi.org/10.1016/j.ecoenv.2021.112405

Angelika T, Adam B, Jarosław D, et al. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Science of the Total Environment. 2020; 763(1):1- 57. https://doi.org/10.1016/j.scitotenv.2020.143038. PMid:33127157. DOI: https://doi.org/10.1016/j.scitotenv.2020.143038

Ebert D, Ecology, Epidemiology and Evolution of Parasitism in Daphnia. National Library of Medicine (US) - National Center for Biotechnology Information, Bethesda. 2015; (3)1.

Nielsen ME, Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. Chemospere. 2018; 211(11):978-985. https://doi.org/10.1016/j.chemosphere.2018.08.027. PMid:30119029. DOI: https://doi.org/10.1016/j.chemosphere.2018.08.027

Wang W, Yang Y, Yang L, et al. Effects of undissociated SiO2 and TiO2 nano-particles on molting of Daphnia pulex: Comparing with dissociated ZnO nano particles. Ecotoxicology and Environmental Safety. 2021; 222(10):1-9. https://doi.org/10.1016/j.ecoenv.2021.112491. PMid:34237643. DOI: https://doi.org/10.1016/j.ecoenv.2021.112491

Harisa S. Landscape intervention design strategy with application of Islamic ornamentation at Trunojoyo Park Malang, Jawa Timur, Indonesia. Journal of Islamic Architecture. 2020; 6(1):41-47. https://doi.org/10.18860/ jia.v6i1.4383. DOI: https://doi.org/10.18860/jia.v6i1.4383

Vazquez OA, Rahman MS. An ecotoxicological approach to microplastics on terrestrial and aquatic organisms: A systematic review in assessment, monitoring and biological impact. Environmental Toxicology and Pharmacology. 2021; 84(5):1-28. https:// doi.org/10.1016/j.etap.2021.103615. PMid:33607259. DOI: https://doi.org/10.1016/j.etap.2021.103615

Trotter B, Wilde MV, Brehm J, et al. Long-term exposure of Daphnia magna to polystyrene microplastic (PSMP) leads to alterations of the proteome, morphology and life-history. Science of The Total Environment. 2021; 795(11):1-12. https://doi.org/10.1016/j. scitotenv.2021.148822. PMid:34328913. DOI: https://doi.org/10.1016/j.scitotenv.2021.148822

Hu L, Ding R, Nie X. Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 2021; 252(2):209- 224. https://doi.org/10.1016/j.cbpc.2021.109224. PMid:34756985. DOI: https://doi.org/10.1016/j.cbpc.2021.109224

Duan S, Fu Y, Dong S, et al. Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. Ecotoxicology and Environmental Safety. 2021; 230(1):1-9. https://doi.org/10.1016/j.ecoenv.2021.113147. PMid:34979307. DOI: https://doi.org/10.1016/j.ecoenv.2021.113147

Chen Y, Romeis J, Meissle M. Performance of Daphnia magna on flour, leaves, and pollen from different maize lines: Implications for risk assessment of genetically engineered crops. Ecotoxicology and Environmental Safety. 2021; 212(4): 1-12. https://doi.org/10.1016/j. ecoenv.2021.111967. PMid:33524911 DOI: https://doi.org/10.1016/j.ecoenv.2021.111967

Nguyen TD, Itayama T, Ramaraj R, et al. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure. Environmental Pollution. 2021; 291(12):1-11. https://doi.org/10.1016/j. envpol.2021.118095. PMid:34537598. DOI: https://doi.org/10.1016/j.envpol.2021.118095

Milenkovic I, Radotic K, Despotovic J, et al. Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. Aquatic Toxicology. 2021; 236(7):1-8. https://doi.org/10.1016/j.aquatox.2021.105867. PMid:34052720. DOI: https://doi.org/10.1016/j.aquatox.2021.105867

Magester S, Barcelona A, Colomer J, et al. Vertical distribution of microplastics in water bodies causes sublethal effects and changes in Daphnia magna swimming behaviour. Ecotoxicology and Environmental Safety. 2021; 228(12):1-8. https://doi.org/10.1016/j. ecoenv.2021.113001. PMid:34800778. DOI: https://doi.org/10.1016/j.ecoenv.2021.113001

Liu Y, Chen M, Ma Y, et al. Reproductive stimulation and energy allocation variation of BDE-47 and its derivatives on Daphnia magna. Chemosphere. 2022; 288(2):132-139. https://doi.org/10.1016/j.chemosphere.2021.132492. PMid:34626654. DOI: https://doi.org/10.1016/j.chemosphere.2021.132492

Tolosi R, Liguoro MD. Delayed toxicity of three fluoroquinolones and their mixtures after neonatal or embryonic exposure, in Daphnia magna. Ecotoxicology and Environmental Safety. 2021; 225(12):1-9. https://doi.org/10.1016/j.ecoenv.2021.112778. PMid:34537589. DOI: https://doi.org/10.1016/j.ecoenv.2021.112778

Seyoum A, Kharlyngdoh JB, Paylar B, et al. Sublethal effects of DBE-DBCH diastereomers on physiology, behavior, and gene expression of Daphnia magna. Environmental Pollution. 2021; 284(9):1-11. https://doi.org/10.1016/j.envpol.2021.117091. PMid:33901980. DOI: https://doi.org/10.1016/j.envpol.2021.117091

Khan MSI, Lee SH, Kim YJ. A mechanistic and kinetic study of diazinon degradation under the influence of microplasma discharge water. Journal of Water Process Engineering. 2020; 36(8):1-10. https://doi.org/10.1016/j. jwpe.2020.101310. DOI: https://doi.org/10.1016/j.jwpe.2020.101310

El-Liethy, Elwakeel KZ, Ahmed MS. Comparison study of Ag(I) and Au(III) loaded on magnetic thioureaformaldehyde as disinfectants for water pathogenic microorganism’s deactivation. Journal of Environmental Chemical Engineering. 2018; 6(4):4380-4390. https:// doi.org/10.1016/j.jece.2018.06.028. DOI: https://doi.org/10.1016/j.jece.2018.06.028

Schroeder A, Souza DH, Fernandes M, et al. Application of glycerol as carbon source for continuous drinking water denitrification using microorganism from natural biomass. Journal of Environmental Management. 2020; 256(2):1-8. https://doi.org/10.1016/j. jenvman.2019.109964. PMid:31989983. DOI: https://doi.org/10.1016/j.jenvman.2019.109964

Ma J, Ding Y, Cheng JCP, et al. Soft detection of 5-day BOD with sparse matrix in city harbor water using deep learning techniques. Water Research. 2020; 170(1):1- 12. https://doi.org/10.1016/j.watres.2019.115350. PMid:31830651 DOI: https://doi.org/10.1016/j.watres.2019.115350

Pang Z, Cai Y, Xiong W, et al. A spectrophotometric method for measuring permanganate index (CODMn) by N, N-Diethyl-p-Phenylene-Diamine (DPD). Chemosphere. 2021; 266(3):1-7. https://doi.org/10.1016/j. chemosphere.2020.128936. PMid:33223208. DOI: https://doi.org/10.1016/j.chemosphere.2020.128936

Saito K, Kokaji Y, Muranaka Y, et al. Simultaneous determination of synthetic cannabinoids in illegal herbal products and blood by LC/TOF-MS, and linear regression analysis of retention time using log Pow. Forensic Chemistry. 2020; 17(3):1-7. https://doi. org/10.1016/j.forc.2019.100202. DOI: https://doi.org/10.1016/j.forc.2019.100202

Pol K, Graaf K, Bruin MD, et al. The effect of replacing sucrose with L-arabinose in drinks and cereal foods on blood glucose and plasma insulin responses in healthy adults. Journal of Functional Foods. 2020; 73(10):1-9. https://doi.org/10.1016/j.jff.2020.104114. DOI: https://doi.org/10.1016/j.jff.2020.104114

Kochany EL. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere. 2018; 202(7):420-437. https://doi.org/10.1016/j.chemosphere.2018.03.104. PMid:29579677. DOI: https://doi.org/10.1016/j.chemosphere.2018.03.104