Assessment of the Protective Effects of Selenium and Zinc against Potassium Dichromate Induced Thyrotoxicity in Preimplanted Wistar albinos Rats

Jump To References Section

Authors

  • University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna ,DZ
  • University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna ,DZ
  • University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna ,DZ
  • University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna ,DZ

DOI:

https://doi.org/10.18311/ti/2023/v30i1/24528

Keywords:

Potassium Dichromate, Preimplanted Rat, Selenium, Thyrotoxicity, Zinc

Abstract

Hexavalent chromium is an environmental pollutant considered to be an endocrine-disrupting metal. Selenium and zinc are essential trace elements, known to play a crucial role in thyroid homeostasis. The purpose of the current work is to investigate the effects of potassium dichromate (K₂Cr₂O7) administrated subcutaneously (s.c) on the 3rd day of pregnancy in preimplanted rats by using graded doses (10, 50, 100 mg/kg, s.c) or K₂Cr₂O7 (10 mg/kg, s.c) in association with Selenium (0.3 mg/kg, s.c) and Zinc chloride (20 mg/kg, s.c). The hormonal profile, apoptosis induction and histological changes in thyroids were evaluated. Our main findings showed that K₂Cr₂O7 promoted hypothyroidism with a significant decrease in plasma T3 and T4 levels (P<0.001), while plasma TSH level increased significantly (P<0.001), in addition, a hypertrophy of the thyroid was noted (P<0.01). Moreover, K2Cr2O7 (10 mg/kg, s.c) induced apoptosis via the caspase 3 pathway (P<0.001) and altered the gland histoarchitecture. The co-treatment with Se or ZnCl₂ has ameliorated the hormonal status and restored partially the thyroid histoarchitecture. We concluded that the administration of Selenium and Zinc can prevent the hazardous effects of potassium dichromate on the hormonal and histological status of the thyroid gland in preimplanted Wistar albino rats.

Downloads

Download data is not yet available.

Published

2023-03-20

How to Cite

Fedala, A., Adjroud, O., Saouli, A., & Salah, I. (2023). Assessment of the Protective Effects of Selenium and Zinc against Potassium Dichromate Induced Thyrotoxicity in Preimplanted <i>Wistar albinos</i> Rats. Toxicology International, 30(1), 1–17. https://doi.org/10.18311/ti/2023/v30i1/24528
Received 2019-12-03
Accepted 2020-04-23
Published 2023-03-20

 

References

Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone disruption: Prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicol. 2012; 33:842-52. https://doi.org/10.1016/j. neuro.2011.11.005 PMid:22138353 DOI: https://doi.org/10.1016/j.neuro.2011.11.005

Boas M, Feldt-Rasmussen U, Skakkebæk NE, Katharina MM. Environmental chemicals and thyroid function. Eur J Endocrinol. 2006; 154(5):599-611. https://doi. org/10.1530/eje.1.02128 PMid:16645005 DOI: https://doi.org/10.1530/eje.1.02128

Rodrigues-Pereira P, Palmero C, RÃ’mulo MM, et al. Influence of Organotin on thyroid morphophysiological status. J Environ Health Sci. 2015.

Ben Amara I, Bouaziz H, Guermazi F, Zeghal N. Effect of selenium on hypothyroidism induced by methima¬zole (MMI) in lactating rats and their pups. Acta Biol Hung. 2009; 61(2):145-57. https://doi.org/10.1556/ ABiol.61.2010.2.3 PMid:20519169 DOI: https://doi.org/10.1556/ABiol.61.2010.2.3

Ben Hamida F, Soussia L, Guermazi F, Rebai T, Zeghal N. Effets de deux antithyroïdiens (propyltiouracile et perchlorate) sur la fonction thyroïdienne de la souris en période d’allaitement. Ann. Endocrinol. 2001; 62:446- 53.

Ghorbel H, Fetoui H, Mahjoub A, Guermazi F, Zeghal N. Thiocyanate effects on thyroid function of weaned mice. C R Biol. 2008; 331:262-71. https://doi.org/10.1016/j. crvi.2008.01.010 PMid:18355748 DOI: https://doi.org/10.1016/j.crvi.2008.01.010

Soussia L, Ben Hamida F, Guermazi F, Zeghal N. Induction et réversibilité d’action du thiocyanate sur la fonction thyroïdienne chez le rat en période d’allaitement. Ann. Endocrinol. 2004; 65:451-8. https://doi.org/10.1016/ S0003-4266(04)95950-1 PMid:15550887 DOI: https://doi.org/10.1016/S0003-4266(04)95950-1

Honglian Y, Wei Z, Qingxi K, et al. Effects of pubertal exposure to thiazole-Zn on thyroid function and devel-opment in female rats. Food and Chemic Toxicol. 2012; 53:100-104. https://doi.org/10.1016/j.fct.2012.11.003 PMid:23200888

Abdul-Hamid M, Salah M. Lycopene reduces deltame¬thrin effects induced thyroid toxicity and DNA damage in albino rats. JOBAZ. 2013; 66:155-63. https://doi. org/10.1016/j.jobaz.2013.08.001 DOI: https://doi.org/10.1016/j.jobaz.2013.08.001

Buha A, Antonijević B, Bulat Z, Jaćević V, Milovanović V, Matović V. The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphe¬nyls on thyroid function in rats. Toxicol Lett. 2013; 221:83-90. https://doi.org/10.1016/j.toxlet.2013.06.216 PMid:23792431 DOI: https://doi.org/10.1016/j.toxlet.2013.06.216

Ibrahim MN, Eweis EA, El-Beltagi HS, Abdel-Mobdy YE. Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed. 2012; 2(1):41- 46. https://doi.org/10.1016/S2221-1691(11)60187-1 PMid:23569832 DOI: https://doi.org/10.1016/S2221-1691(11)60187-1

Mahmood T, Qureshi IZ, Nadeem MS, Khan MA. Hexavalent chromium toxicity in pituitary and thyroid glands. Pakistan J Zool. 2008; 40(2):91-7.

Cohen M, Kargacin B, Klein C, Costa M. Mechanisms of chromium carcinogenicity and tox¬icity. Crit Rev Toxicol. 1993; 23:255-81. https://doi. org/10.3109/10408449309105012 PMid:8260068 DOI: https://doi.org/10.3109/10408449309105012

Richelmi P, Baldi C. Blood levels of hexavalent chro¬mium in rats. “In vitro” and “In vivo” experiments. Int J Environ Anal Chem. 1984; 17(3-4):181−6. https://doi. org/10.1080/03067318408076971 PMid:6746187 DOI: https://doi.org/10.1080/03067318408076971

IARC (International Agency for Research on Cancer). Chromium, nickel and weldings. monograhs on the evaluation of carcinogenic risks to humas. IARC Monogr Eval Carcinog Risks Hum. 1990; 49:1-648.

Levis AG, Bianchi V. Mutagenic and cytogenetic effects of chromium compounds, in Langard S, editor. Biological and Environmental Aspects of Chromium, Amsterdam. 1982. p. 171-208. https://doi.org/10.1016/B978-0-444- 80441-9.50012-2 DOI: https://doi.org/10.1016/B978-0-444-80441-9.50012-2

Nishio A, Uyeki EM. Inhibition of DNA synthesis by chromium compounds. J Toxicol Environ Health. 1985; 15:237-44. https://doi.org/10.1080/15287398509530650 PMid:3892022 DOI: https://doi.org/10.1080/15287398509530650

ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for Chromium; 2012.

Adjroud O. 2010. Protective effects of selenium against potassium dichromate-induced hematotoxicity in female and male Wistar albino rats. Annales de Toxicologie Analytique. 2010; 22:165-72. https://doi.org/10.1051/ ata/2010025 DOI: https://doi.org/10.1051/ata/2010025

Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp Toxicol Pathol. 2011; 63(6):541-8. https://doi.org/10.1016/j.etp.2010.04.005 PMid:20494564 DOI: https://doi.org/10.1016/j.etp.2010.04.005

Goodarzi Z, Karami E, Ahmadizadeh M. Simvastatin attenuates chromium-induced nephrotoxicity in rats. Nephropathol. 2017; 6(1):5-9. https://doi.org/10.15171/ jnp.2017.02 PMid:28042547 PMCid:PMC5106881 DOI: https://doi.org/10.15171/jnp.2017.02

Jahnabi S, Choudhuri S, Choudhuri D. Effect of sub¬chronic exposure to chromium on hematological and biochemical parameters of male albino rat. Asian J Pharm Clin Res. 2017; 10(5):345-8. https://doi.org/10.22159/ ajpcr.2017.v10i5.17468 DOI: https://doi.org/10.22159/ajpcr.2017.v10i5.17468

Khorsandi K, Rabbani-Chadegani A. Studies on the genotoxic effect of chromium oxide (Cr VI): Interaction with deoxyribonucleic acid in solution. Mut Res. 2013; 750(1-2):105-10. https://doi.org/10.1016/j. mrgentox.2012.10.002 PMid:23098859 DOI: https://doi.org/10.1016/j.mrgentox.2012.10.002

Monteiro C, Conceição S, Bastos V, Oliveira H. Cr (VI)- induced genotoxicity and cell cycle arrest in human osteoblast cell line MG-63. J Appl Toxicol. 2019; 1-9. https://doi.org/10.1002/jat.3793 PMid:30883852 DOI: https://doi.org/10.1002/jat.3793

Fetoui H, Bouaziz H, Mahjoubi-Samet A, Soussia L, Guermazi F, Zeghal N. Food restriction induced thyroid changes and their reversal after refeeding in female rats and their pups. Acta Biol Hung. 2006; 57:391-402. https:// doi.org/10.1556/ABiol.57.2006.4.1 PMid:17278701 DOI: https://doi.org/10.1556/ABiol.57.2006.4.1

Arthur JR., Nicol F, Beckett GJ. Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am J Clin Nutr. 1993; 57(2):236-9. https:// doi.org/10.1093/ajcn/57.2.236S PMid:8427195 DOI: https://doi.org/10.1093/ajcn/57.2.236S

Contempre B, Duale NL, Dumont JE, Ngo B, Diplock AT, Vanderpas J. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. J Clin Endocrinol. 1992; 36:579- 83. https://doi.org/10.1111/j.1365-2265.1992.tb02268.x PMid:1424183 DOI: https://doi.org/10.1111/j.1365-2265.1992.tb02268.x

Ibrahim SH, Naeem MR, ALshymaa AS. Effect of sele¬nium and zinc supplementation on hypothyroidism in rats. ARC J Nutri Growth. 2016; 2(2):16-27. https://doi. org/10.20431/2455-2550.0202002 DOI: https://doi.org/10.20431/2455-2550.0202002

Zimmermann MB. Iodine requirements and the risks and benefits of correcting iodine deficiency in popula-tions. J Trace Elem Med Biol. 2008; 22:81-92. https://doi. org/10.1016/j.jtemb.2008.03.001 PMid:18565420 DOI: https://doi.org/10.1016/j.jtemb.2008.03.001

Betsy A, Binitha MP, Sarita S. Zinc Deficiency associ¬ated with hypothyroidism: An overlooked cause of severe alopecia. Int J Trichology. 2013; 5(1):40-2. https:// doi.org/10.4103/0974-7753.114714 PMid:23960398 PMCid:PMC3746228 DOI: https://doi.org/10.4103/0974-7753.114714

Triggiani V, Tafaro E, Giagulli VA, et al. Role of iodine, selenium and other micronutrients in thy¬roid function and disorders. Endocr Metab Immune Disord Drug Targets. 2009; 9(3):277-94. https://doi. org/10.2174/187153009789044392 PMid:19594417 DOI: https://doi.org/10.2174/187153009789044392

Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science. 2003; 1439-43. https://doi.org/10.1126/sci¬ence.1083516 PMid:12775843 DOI: https://doi.org/10.1126/science.1083516

Köhrle J, Jakob F, ContempréB, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev. 2001; 26(7):944-84. https://doi.org/10.1210/er.2001- 0034 PMid:16174820 DOI: https://doi.org/10.1210/er.2001-0034

Thorlacius-Ussing O, Danscher G. Selenium in the anterior pituitary of rats exposed to sodium sel¬enite: Light and electron microscopic localization. Toxicol Appl Pharmacol. 1985; 81:67-74. https://doi. org/10.1016/0041-008X(85)90121-8 PMid:4049422 DOI: https://doi.org/10.1016/0041-008X(85)90121-8

Thorlacius-Ussing O, Jensen FT. Selenium in the ante¬rior pituitary of the rat after a single injection of 75 Se sodium selenite. Biol Trace Elem Res. 1988; 15 277-287. https://doi.org/10.1007/BF02990144 PMid:2484525 DOI: https://doi.org/10.1007/BF02990144

Thorlacius-Ussing O, Gregersen M, Hertel N. The con¬centration of twelve elements in the anterior pituitary from human subjects and rats as measured by Particle Induced X-Ray Emission (PIXE). Biol Trace Elem Res. 1988; 16:189-202. https://doi.org/10.1007/BF02797135 PMid:2484548 DOI: https://doi.org/10.1007/BF02797135

Dumitrescu AM, Liao X-H, Abdullah MHS, et al. Mutations in the SBP2 gene produce abnormal thy¬roid hormone metabolism in man. Nat Genet. 2005; 37(11):1247-52. https://doi.org/10.1038/ng1654 PMid:16228000 DOI: https://doi.org/10.1038/ng1654

Wastney ME, Aamodt RL, Rumble WF, Henkin RI. Kineticanalysis of zinc metabolism and its regulation in normal humans. Am J Physiol. 1986; 251:398-408. https://doi.org/10.1152/ajpregu.1986.251.2.R398 PMid:3740321 DOI: https://doi.org/10.1152/ajpregu.1986.251.2.R398

Barceloux DG. Zinc. J Toxicol Clin Toxicol. 1999; 37(2):279-92. https://doi.org/10.1081/CLT-100102426 PMid:10382562 DOI: https://doi.org/10.1081/CLT-100102426

Prasad S. Discovery of human Zinc deficiency: Its impact on human health and disease. Adv Nutr. 2013; 2:176-90. https://doi.org/10.3945/an.112.003210 PMid:23493534 PMCid:PMC3649098 DOI: https://doi.org/10.3945/an.112.003210

Brandao-Neto J, Saturnino A, Leite LD, et al. Lack of acute zinc effect on thyrotropin-releasing hormone-stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutr Res. 2006; 26:493- 496. https://doi.org/10.1016/j.nutres.2006.08.010 DOI: https://doi.org/10.1016/j.nutres.2006.08.010

Farooqi L, Mazeto GM, Shuhama T, Brandão-Neto J. Effects of a single venous dose of zinc on thyroid status in healthy individuals and patients with graves’ disease. Met Based Drugs. 2000; 7:151-5. https://doi.org/10.1155/ MBD.2000.151 PMid:18475939 PMCid:PMC2365210 DOI: https://doi.org/10.1155/MBD.2000.151

Pekary AE, Lukaski HC, Mena I, Hershman JM. Processing of TRH precursor peptides in rat brain and pituitary is zinc dependent. Peptides. 1991; 12:1025-32. https://doi.org/10.1016/0196-9781(91)90055-T PMid:1800945 DOI: https://doi.org/10.1016/0196-9781(91)90055-T

Adjroud O. 2009. Effects of potassium dichromate on haematological parametrs in female and male Wistar albino rats. Ass Univ Bull environ Res. 2009; 12:2.

Käkelä R, Käkelä A, Hyvärinen H. Effects of nickel chlo¬ride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999; 123:27-37. https://doi. org/10.1016/S0742-8413(99)00006-7 PMid:10390053 DOI: https://doi.org/10.1016/S0742-8413(99)00006-7

Paksy K, Varga B, Lázár P. Zinc protection against cad¬mium-induced infertility in female rats. Effect of zinc and cadmium on the progesterone production of cul¬tured granulosa cells. Bio Metals. 1996; 10:27-36. DOI: https://doi.org/10.1023/A:1018362603065

Hadie SNH, Abdul Manan H, Abdulla S. Thyroid Gland Resection in euthanised Rat: A Practical Guide. Int Med J. 2013; 20 (1):1-4.

Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. China. Churchill Livingstone: Elsevier; 2008.

Du Y, Bales KR, Dodel RC. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A. 1997; 94(21):11657- 62. https://doi.org/10.1073/pnas.94.21.11657 PMid:9326666 PMCid:PMC23571 DOI: https://doi.org/10.1073/pnas.94.21.11657

ElBakry RH, Tawfik SM. Histological study of the effect of potassium dichromate on the thyroid follicular cells of adult male albino rat and the possible protective role of ascorbic acid (vitamin C). J Microsc Ultrastruct Environ Monit. 2014; 14:2121-6. DOI: https://doi.org/10.1016/j.jmau.2014.04.003

Mahmood T, Qureshi IZ, Iqba MJ. Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium. Histol Histopathol. 2010; 25(11):1355-70.

Adeeko A, Li D, Forsyth DS, et al. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci. 2003; 74(2):407-415. https://doi. org/10.1093/toxsci/kfg131 PMid:12773765 DOI: https://doi.org/10.1093/toxsci/kfg131

Cooke GM, Tryphonas H, Pulido O, Caldwell D, Bondy GS, Forsyth D. Oral (gavage), in utero and postna¬tal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part 1: Toxicology, histopathol¬ogy and clinical chemistry. Food Chem Toxicol. 2004; 42(2):211-20. https://doi.org/10.1016/j.fct.2003.09.003 PMid:14667468 DOI: https://doi.org/10.1016/j.fct.2003.09.003

Pilat-Marcinkiewicz B, Brzoska MM, Sawicki B, Moniuszko-Jakoniuk J. Structure and function of thy¬roid follicular cells in female rats chronically exposed to Cadmium. Bull Vet Inst Pulawy. 2003; 47:157-63.

Banu S, Stanley J, Lee J. Hexavalent chromium-induced apopto-sis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol. 2011; 251(3):253-66. https://doi.org/10.1016/j.taap.2011.01.011 PMid:21262251 PMCid: PMC3131794 DOI: https://doi.org/10.1016/j.taap.2011.01.011

Bagchi D, Bagchi M, Stohs S. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem. 2001; 222(1/2):149-58. https://doi.org/10.1007/978-1-4615- 0793-2_18 DOI: https://doi.org/10.1007/978-1-4615-0793-2_18

Wen G, Ringseis R, Eder K. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hor-mone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoSONE. 2017; 12(11). https:// doi.org/10.1371/journal.pone.0187561 PMid:29095946 PMCid:PMC5667865 DOI: https://doi.org/10.1371/journal.pone.0187561

Quinteros F, Poliandri A, Machiavelli L. In vivo and in vitro effects of chromium VI on anterior pituitary hor-mone release and cell viability. Toxicol Appl Pharmacol. 2007; 218(1):79-87. https://doi.org/10.1016/j.taap.2006. 10.017 PMid:17141818 DOI: https://doi.org/10.1016/j.taap.2006.10.017

Bandyopadhyay U, Kausik B, Banerjee KR. Extrathyroidal actions of antithyroid thionamides. Review article. Toxicol Lett. 2002; 128:117-27. https://doi.org/10.1016/ S0378-4274(01)00539-2 PMid:11869823 DOI: https://doi.org/10.1016/S0378-4274(01)00539-2

Dorea JG. Iodine nutrition and breast feeding. J Trace Elem Med Biol. 2002; 16:207-20. https://doi.org/10.1016/ S0946-672X(02)80047-5 PMid:12530582 DOI: https://doi.org/10.1016/S0946-672X(02)80047-5

Song M, Kim YJ, Park YK, Ryu JC. Changes in thyroid peroxidase activity in response to various chem¬icals. J Environ Monit. 2012; 14(8):2121-6. https://doi. org/10.1039/c2em30106g PMid:22699773 DOI: https://doi.org/10.1039/c2em30106g

Cao J, Guo LH, Wan B, Wei Y. In vitro fluorescence dis¬placement investigation of thyroxine transport disruption by bisphenol A. J Environ Sci (China). 2011; 23:315-21. https://doi.org/10.1016/S1001-0742(10)60408-1 DOI: https://doi.org/10.1016/S1001-0742(10)60408-1

Gutleb CA, Cenijn P, Van-Velzen M, et al. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus). Environ Sci Technol. 2010; 44:3149- 54. https://doi.org/10.1021/es903029j PMid:20345174 DOI: https://doi.org/10.1021/es903029j

Fortunato RS, Cristina E, De Souza L, et al. Functional Consequences of Dual Oxidase-Thyroperoxidase Interaction at the Plasma Membrane. J Clin Endocrinol Metab. 2010; 95(12):5403-11. https://doi.org/10.1210/ jc.2010-1085 PMid:20826581 DOI: https://doi.org/10.1210/jc.2010-1085

Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH. Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comp Biochem Physiol. Part C Toxicol Pharmacol. 2014; 161:53-7. https://doi.org/10.1016/j.cbpc.2014.02.001 PMid:24521933 DOI: https://doi.org/10.1016/j.cbpc.2014.02.001

Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A. Reversal of cadmium-induced thyroid dys¬function by selenium, zinc, or their combination in rat. Biol Trace Elem Res. 2008; 126:194-203. https://doi. org/10.1007/s12011-008-8194-8 PMid:18685812 DOI: https://doi.org/10.1007/s12011-008-8194-8

Yoshizuka M, Mori N, Hamasaki K, et al. Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol. 1991; 55:97-104. https://doi. org/10.1016/0014-4800(91)90021-O PMid:1884772 DOI: https://doi.org/10.1016/0014-4800(91)90021-O

Prakash P, Kumar PG, Laloraya M, Javeri T, Marihar MS. Superoxide anion radical production as a cadmium-mediated mechanism of toxicity in avian thyroid: An electron spins resonance study by spin trapping. Comp Biochem Physiol. Part C Pharmacol Toxicol Endocrinol. 1997; 118:89-95. https://doi.org/10.1016/S0742- 8413(97)00082-0 DOI: https://doi.org/10.1016/S0742-8413(97)00082-0

Chaurasia SS, Gupta P, Kar A, Maiti PK. Free radi¬cal mediated membrane perturbation and inhibition of type-I iodothyronine 59-monodeiodinase activ¬ity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int. 1996; 39:765-70. https://doi. org/10.1080/15216549600201851 PMid:8843345 DOI: https://doi.org/10.1080/15216549600201851

Gupta P, Chaurasia SS, Maiti PK, Kar A. Cadmium induced alterations in extrathyroidal conversion of thyroxine to triiodothyronine by type-I iodothyronine 59-monodeiodinase in male mouse. Horm Metab Res. 1997; 29:151-2. https://doi.org/10.1055/s-2007-979009 PMid:9137987 DOI: https://doi.org/10.1055/s-2007-979009

Schröder-van der Elst JP, Van der Heide D. Thyroxine, 3, 5, 3’-triiodothyronine, and 3, 3’, 5’-triiodothyronine concentrations in several tissues of the rat: Effects of ami¬odarone and desethylamiodarone on thyroid hormone metabolism. Endocrinol. 1991; 127(4):1656-64. https:// doi.org/10.1210/endo-127-4-1656 PMid:2401231 DOI: https://doi.org/10.1210/endo-127-4-1656

Ferreira AC, Lisboa PC, Oliveira KJ, Lima LP, Barros IA, Carvalho DP. Inhibition of thyroid type 1 deiodinase activity by flavonoids. Food Chem Toxicol. 2002; 40:913- 7. https://doi.org/10.1016/S0278-6915(02)00064-9 PMid: 12065212 DOI: https://doi.org/10.1016/S0278-6915(02)00064-9

Kohrle J. Local activation and inactivation of thyroid hormones: The deiodinase family. Mol Cell Endocrinol. 1999; 151:103-19. https://doi.org/10.1016/S0303-7207(99) 00040-4 PMid:10411325 DOI: https://doi.org/10.1016/S0303-7207(99)00040-4

Vom Saal FS, Akingbemi BT, Belcher SM, et al. Chapel Hill Bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007; 24:131-8. https://doi. org/10.1016/j.reprotox.2007.07.005 PMid:17768031 PMCid:PMC2967230 DOI: https://doi.org/10.1016/j.reprotox.2007.07.005

Thomson CD, Campbell JM, Miller J, Skeaff SA, Livingstone V. Selenium and iodine supplementation: Effect on thyroid function of older New Zealanders. Am J Clin Nutr. 2009; 90:1038-46. https://doi.org/10.3945/ ajcn.2009.28190 PMid:19692495 DOI: https://doi.org/10.3945/ajcn.2009.28190

Berry MJ, Banu L, Larsen PR. Type I iodothyronine deio¬dinase is a selenocysteine-containing enzyme. Nat. 1991; 349(6308):438-40. https://doi.org/10.1038/349438a0 PMid:1825132 DOI: https://doi.org/10.1038/349438a0

Rasmussen LB, Schomburg L, Kohrle J, et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur J Endocrinol. 2011; 164:585-90. https://doi.org/10.1530/EJE-10-1026 PMid:21242171 DOI: https://doi.org/10.1530/EJE-10-1026

Zagrodzki P, Szmigiel H, Ratajczak R, Szybinski Z, Zachwieja Z. The role of selenium in iodine metabo¬lism in children with goiter. Environ Health Perspect. 2000; 108:67-71. https://doi.org/10.1289/ehp.0010867 PMid:10620526 PMCid:PMC1637847 DOI: https://doi.org/10.1289/ehp.0010867

Colzani RM, Alex S, Fang S, Stone LS, Braverman LE. Effects of iodine repletion on thyroid morphology in iodine and/or selenium deficient rat term fetuses, pups and mothers. Biochimie. 1999; 81:485-91. https://doi. org/10.1016/S0300-9084(99)80099-6 PMid:10403179 DOI: https://doi.org/10.1016/S0300-9084(99)80099-6

Miyazaki K, Watanabe C, Mori K, Yoshida K, Ohtsuka R. The effects of gestational arsenic exposure and dietary selenium deficiency on selenium and selenoenzymes in maternal and fetal tissues in mice. Toxicol. 2005; 208:357-65. https://doi.org/10.1016/j.tox.2004.11.030 PMid:15695021 DOI: https://doi.org/10.1016/j.tox.2004.11.030

Winther KH, Bonnema SJ, Cold F, et al. Does selenium supplementation affect thyroid function? Results froma randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol. 2015; 172:657-67. https:// doi.org/10.1530/EJE-15-0069 PMid:25740851 DOI: https://doi.org/10.1530/EJE-15-0069

Björkman U, Ekholm R. Hydrogen peroxide degradation and glutathione peroxidase activity in cultures of thyroid cells. Mol Cell Endocrinol. 1995; 111(1):99-107. https:// doi.org/10.1016/0303-7207(95)03552-I PMid:7649359 DOI: https://doi.org/10.1016/0303-7207(95)03552-I

Hala ZE, Ibrahim KR, Hemmat HG. A histological study on the possible protective effect of selenium against chromium-induced thyrotoxicity in adult male albino rats. Egy J histol. 2016; 39(1). https://doi.org/10.1097/01. EHX.0000481747.20806.2d DOI: https://doi.org/10.1097/01.EHX.0000481747.20806.2d

Danforth EJr, Burger AG. The impact of nutrition on thyroid hormone physiology and action. Annu Rev Nutr. 1989; 9:201-27. https://doi.org/10.1146/annurev. nu.09.070189.001221 PMid:2669870 DOI: https://doi.org/10.1146/annurev.nu.09.070189.001221

Napolitano G, Palka G, Lio S, et al. Is zinc deficiency a cause of subclinical hypothyroidism in Down syn-drome? Ann Genet. 1990; 33(1):9-15.

Satoshi N. 1983. Effects of sulfonamides on the pituitary-thyroid gland: 1. Morphological changes of thyroid gland and variation in plasma thyroxine and triiodothyronine. J Toxicol sci. 1983; 8:47-59. https://doi.org/10.2131/ jts.8.47 PMid:6876203 DOI: https://doi.org/10.2131/jts.8.47

Yang H, Zhang W, Kong Q, et al. Effects of pubertal exposure to thiazole-Zn on thyroid function and devel-opment in female rats. Food and Chem Toxicol. 2013; 53:100-4. https://doi.org/10.1016/j.fct.2012.11.003 PMid:23200888 DOI: https://doi.org/10.1016/j.fct.2012.11.003

Aktac T, Bakar E. The histopathological changes in the mouse thyroid depending on the aluminium. J cell mol Biol. 2002; 1:69-72.

Matsunaga M, Eguchi K, Fukuda T, et al. The effects of cytokines, antithyroidal drugs and glucocorticoids on phagocytosis by thyroid cells. Acta Endocrinol (Copenh). 1988; 119:413-9. https://doi.org/10.1530/ acta.0.1190413 PMid:2461040 DOI: https://doi.org/10.1530/acta.0.1190413

Khalaf AH, Arafat EA. Effect of different doses of mono¬sodium glutamate on the thyroid follicular cells of adult male albino rats: A histological study. Int J Clin Exp Pathol. 2015; 8(12):15498-510.

Bagchi D, Stohs JS, Downs BW, Bagchi M, Preuss GH. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicol. 2002; 180(1):5-22. https://doi. org/10.1016/S0300-483X(02)00378-5 PMid:12324196 DOI: https://doi.org/10.1016/S0300-483X(02)00378-5

McNabb A. Control of thyroid gland function. In Thyroid Hormones. New Jersey: Prentice Hall; 1992. p. 49-73.

Nudler S, Quinteros F, Miler EA, Cabilla JP, Ronchetti SA, Duvilanski BH. Chromium VI administration induces oxidative stress in hypothalamus and ante¬rior pituitary gland from male rats. Toxicol Lett. 2009; 185:187-92. https://doi.org/10.1016/j.toxlet.2009.01.003 PMid:19167472 DOI: https://doi.org/10.1016/j.toxlet.2009.01.003

Schomburg L, Kohrle J. On the importance of sele¬nium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food. 2008; 52:1235-46. https://doi.org/10.1002/mnfr.200700465 PMid:18686295 DOI: https://doi.org/10.1002/mnfr.200700465

Cozzolino SF. Biodisponibility of de nutrients. 3a ed. Barueri, SP: Manole; 2009.

Zago MP, Oteiza PI. The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radic Biol Med. 2001; 31:266-74. https://doi.org/10.1016/S0891- 5849(01)00583-4 PMid:11440839 DOI: https://doi.org/10.1016/S0891-5849(01)00583-4

Maret W. The function of zinc metallothionein: A link between cellular zinc and redox state. J Nutr. 2000; 130:1455-8. https://doi.org/10.1093/jn/130.5.1455S PMid:10801959 DOI: https://doi.org/10.1093/jn/130.5.1455S

Ferreira A, Matsubara LS. Free radicals: concepts, asso¬ciated diseases, defense system and oxidative stress (Portuguese). Rev Assoc Med Bras. 1997; 43:61-8. https://doi.org/10.1590/S0104-42301997000100014 DOI: https://doi.org/10.1590/S0104-42301997000100014

Thirunavukkarasu C, Sakthisekaran D. Effect of sele¬nium on N-nitrosodiethylamine-induced multistage hepatocarcinogenesis with reference to lipid peroxida¬tion and enzymatic antioxidants. Cell Biochem Funct. 2001; 19:27-35. https://doi.org/10.1002/cbf.895 PMid: 11223868 DOI: https://doi.org/10.1002/cbf.895