Photo-Catalytic Activity of Ag-N Co-Doped ZnO/CuO Nanocomposite for Degradation of Methyl Orange

Jump To References Section

Authors

  • ,ET
  • ,ET
  • ,ET

DOI:

https://doi.org/10.18311/jsst/2016/6602

Keywords:

Band-Gap, Degradation, Nanocomposite, Photocatalysts, Rate Constant, Spectroscopy.

Abstract

Nano-size Ag-N co-doped ZnO-CuO composites have been synthesized and tested for their photo-catalytic activity towards degradation of methyl orange in aqueous solution under visible as well as UV radiations. Crystal structure, surface functional groups, metallic composition and band structure of as-synthesized nano-material were investigated using XRD, FTIR, AAS and UV-Vis spectroscopic techniques, respectively. Ag-N co-doped ZnO-CuO photocatalyst showed higher photo-catalytic activity than Ag- or N-doped and undoped composite photocatalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts, is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, solution pH and substrate initial concentration on the degradation of methyl orange have also been studied.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2016-07-06

How to Cite

Yasin, J. M., Yadav, O. P., & Taddesse, A. M. (2016). Photo-Catalytic Activity of Ag-N Co-Doped ZnO/CuO Nanocomposite for Degradation of Methyl Orange. Journal of Surface Science and Technology, 32(1-2), 51–59. https://doi.org/10.18311/jsst/2016/6602

Issue

Section

Articles
Received 2016-06-28
Accepted 2016-06-28
Published 2016-07-06

 

References

S. Anandan, A. Vinu, K. L. P. S. Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan and K. Ariga, J. Mol. Catalysis A: Chemical 266, 148 (2007).

G. Kiros, T. Abi and O. P. Yadav, J. Surface Sci. Technol., 29, 1 (2013).

W. Tesfay, O. P. Yadav, T. Abi and J. Kaushal, Bull. Chem. Soc. Ethiopia, 27(2), 1 (2013).

M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).

B. Li and Y. Wang, Superlattices and Microstructures, 47, 615 (2010).

M. H. Priya and G. Madras, Industrial and Engg. Chemistry Research , 45, 913 (2006).

D. M. Fernandes, R. Silva, A. A. W. Hechenleitner, E. Radovanovic, M. A. C. Melo and E. A. G. Pineda, Mater. Chem. and Phys., 115, 110 (2009).

D. S. Bhatkhande, S. P. Kamble, S. B. Sawant and V. G. Pangarkar, Chem. Eng. Journal, 54, 32 (2001).

S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib, Desalination, 261, 3 (2010).

G. Campet, J. P. Manaud, C. Puprichtkun and Z. W. Sun, Active and passive Elec. Comp., 13, 175 (1989).

R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran and A. Stephen, Mater. Sci. and Engg. C., 08 (2012).

C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu and X. Qu, J. Hrdous Material, 176, 807 (2010).

M. A. Habib, M. T. Shahadat, N. M. Bahadur, I. M. Ismail and A. J. Mahmood, Intern. Nano Letters, 3, 1 (2013).

S. Talam, S. R. Karumuri and N. Gunnam, ISRN Nanotechnology; doi:10.5402/2012/372505. (2012)

C. Liu, X. Yang, H. Yuan, Z. Zhou and D. Xiao, Sensors, 7, 708 (2007).

H. Ma, X. Cheng, C. Ma, X. Dong, X. Zhang, M. Xue, X. Zhang and Y. Fu, Intern. J. Photoenergy, Article ID 625024: doi. 10:1155/2013/625024 ( 2013).

C. Vidyasagar, Y. A. Naik, R. Viswanatha and T. G. Venkatesh. Nanoscience and Nanotechnology: ISSN: 2278 – 1374 (2012).

A. Sharma, Pallavi and S. Kumar, Nano Vision, 1, 115 (2011).

A. Sharma, Pallavi and S. Kumar, Nanoscience and Nanotechnology, 2, 82 (2012).

M. El-Kemary, H. El-Shamy and I. El-Mehasseb, J. luminescence, 130, 2327 (2010).

D. Li and H. Haneda, J. Photochem. Photobiol. A: Chem, 155, 171 (2004).

Y. Zhang and J. Mu, J. Colloid and Interface Science, 309, 478 (2007).

K. M. Joshi, B. N. Patil and V. S. Shrivastava Archives Appl. Sci. Res., 3, 596 (2011).