Study on the Effect of an Electrolyte on the Self-Aggregation and the Geometry of the Dye Aggregates of Methylene Blue in Aqueous Media

Jump To References Section

Authors

  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jsst/2016/6599

Keywords:

Aggregate Geometry, Dimerization Constant, Effect of Electrolyte, Exciton Model, Methylene Blue.

Abstract

The self-aggregation of Methylene Blue (MB) dye in aqueous media has been investigated spectrophotometrically in presence of sodium chloride (NaCl) at 293.15, 303.15 and 313.15K. The dimerization constant (KD) of the MB dye in aqueous solution with or without the electrolyte has been computed using a non-linear least square regression technique. It is observed that presence of the electrolyte resulted into sharp increase in KD of MB indicating that presence of the electrolyte favours formation of dye aggregates. There is, however, a decrease in KD with increase in temperature. From the observed spectra of the dye, the twist (θ1) and the tilt (θ2) angles between the dipoles of MB molecules in the aggregates have been computed based on exciton model. Change in the monomeric fractions of the dye (α) in presence of the added electrolyte as a function of the dye concentration has also been computed. The results indicated that the dye aggregates formed is essentially of the sandwich type geometry (H-aggregates) with a slight deviation from an exact parallel stacking arrangement and reduced twist angle. The thermodynamic parameters of the aggregation process in presence of the electrolyte have been evaluated from the temperature dependence of KD. It is observed that the aggregation process is an enthalpy rather than entropy controlled one.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2016-07-06

How to Cite

Florence, N., & Naorem, H. (2016). Study on the Effect of an Electrolyte on the Self-Aggregation and the Geometry of the Dye Aggregates of Methylene Blue in Aqueous Media. Journal of Surface Science and Technology, 32(1-2), 28–34. https://doi.org/10.18311/jsst/2016/6599

Issue

Section

Articles
Received 2016-06-28
Accepted 2016-06-28
Published 2016-07-06

 

References

R. Sabate, J. Estelrich, Spectrochim. Acta Part A 70, 471 (2008).

H. Naorem and S. D. Dushila, J. Mol. Liquids, 173, 119 (2012).

C. Ouyang, S. Chen, B. Che and G. Xue, Coll. and Surfaces A: Physicochem. Eng. Aspects, 301, 346 (2007).

A. Niazi, A. Yazdanipour, J. Ghasemi and M. Kubista, Spectrochim. Acta Part A 65, 73 (2006).

K. Patil, R. Pawar and P. Talap, Phys. Chem. Chem. Phys., 2, 4310 (2000).

A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra and G. B. Behera, Chem. Revs., 100, 1973 (2000).

B. Neumann and P. Pollmann, Phys. Chem. Chem. Phys., 2, 4784 (2000).

R. Sanan, T. S. Kang, R. K. Mahajan, Phys. Chem. Chem. Phys., 16, 5667 (2014).

M. K. Goftar, M. K. Zahra and M. K. Nasrollah, Euro. J. Exp. Bio., 4, 72 (2014).

F. Herrera, P. Perodra, L. A. Pachon, S. K. Saikin and A. A. Guzik, J. Phys. Chem. Letter., 5, 3708 (2014).

R. Steiger, R. Pugin and J. Heir, Coll. and Surfaces B: Biointerfaces, 74, 484 (2009).

M. S. A. Abdel- Mottaleb, M. M. S. Abdel- Mottaleb, H. S. Hafez and M. Saif, International J. Photoenergy (2014). Doi: org10.1155/2014/579476.

P. D. Talap, Archs. Appl. Sci. Res. 4, 826 (2012).

W. Frank, S. Yao, D. Tony and R. Wortmann, J. Am. Chem. Soc., 124, 9431 (2002).

Z. Chen, F. Li and C. Huang, Curr. Org. Chem., 11, 1241 (2007).

Q. Zhang, K. Park and G. Cao, Material Matters, 5.2, 32 (2010).

E. Morgounova, Q. Shao, B. J. Hackel, D. D. Thomas and S. Ashkenazi, J. Biomed. Opt., 18,0560041 (2013).

R. Sabate, V. Gallardo, A. de la Maza and J. Estelrich, Langmuir, 17, 6433 (2001).

R. F. Khairudinov and N. Serpone, J. Phys. Chem. B, 101, 2602 (1997).

L. Antonov, G. Gergov, V. Petrov, M. Kubista and J. Nygren, Talanta, 49, 99 (1999).

S. J. Khouri and V. Buss, J. Sol. Chem., 39, 121 (2010).

S. Barazzouk, H. Lee, S. Hotchandani and P. V. Kamat, J. Phys. Chem. B, 104, 3616 (2000).

J. B. Ghasemi and M. Miladi, J. Chinese Chem. Soc., 56, 459 (2009).

H. Naorem and Florence, J. Mol. Liquids, 198, 255 (2014).

H. Naorem and S. D. Dushila, J. Indian Chem. Soc., 91, 271 (2014).

H. Naorem and S. D. Dushila, J. Surface Sci. Technol., 22, 89 (2006).

H. Naorem and S. D. Dushila, Spectrochim Acta Part A, 101, 67 (2013).

S. D. Dushila, Thermodynamic investigations on the solvent Hydrophobicity and its effect on the Micellar Behavior of some Ionic surfactants, Ph. D. Thesis, Submitted to Manipur University (2011).

K. Vinod, A. B. Gary and S. Pandey, Chem. Commun., 47, 4730 (2011).

S. P. Moulik, S. Ghosh and A. R. Das, Ind. J. Chem., 14A, 306 (1976).

K. Murakami, Y. Kimura and M. Saito, Bull. Chem. Soc. Japan, 70, 115 (1997).

G. Alberghina, R. Bianchini, M. Fichera and S. Fisichella, Dyes Pigment, 46, 129 (2000).

I. B. Malbam, P. Letellier and M. Turmine, J. Coll. Interface Sci., 328, 166 (2008).

W. Spencer and J. R. Sutter, J. Phys. Chem., 83, 1573 (1979).

M. Kasha, M. H. Rawls and M. A. El-bayoumi, Pure Appl. Chem., 11, 371 (1965).

K. K. Rohatgi and A. K Mukhopadhyay, J. Phy. Chem., 76, 3970 (26).

E. G. Mcrae and M. Kasha, J. Chem. Phys., 28, 721 (1958).