Dye Adsorption Kinetics and Isotherm Study Using Surfactant-Modified Biomass: Influence of pH Substantiated with Quantum Chemical Validation

Jump To References Section

Authors

  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat ,IN
  • Department of Zoology, B. P. Baria Science Institute, Navsari – 396445, Gujarat ,IN
  • Department of Applied Science, Faculty of Electrical and Mechanical Engineering, College of Military Engineering, Pune – 411031, Maharashtra ,IN
  • Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat ,IN
  • Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat ,IN

DOI:

https://doi.org/10.18311/jsst/2021/28588

Keywords:

Computational Simulation, Dye, Isotherm, Kinetics, Surfactant, Thermodynamics

Abstract

The current study offers a comprehensive understanding on the adsorption study employing the cost-effective biomass as an effective substitute against high-cost treatment options. The present work put forth the adsorption of hazardous cationic dye: Crystal Violet (CV) from aqueous solution using Rice Husk (RH) and surfactant Modified Rice Husk (MRH). Effect of the adsorbents: RH and MRH onto CV removal is determined considering various experimental parameters viz., mass, volume, dye concentration, contact-time, equilibrium temperature, and pH where maximum CV adsorption was achieved at pH = 8. Results obtained are attributed to the favorable ion-pair formation between CV and anionic surfactant: Sodium Dodecyl Sulfate (SDS) which is validated further using quantum chemical calculations. To counterpart the sorption process onto the adsorbent, the adsorption study was validated employing several kinetic models and isotherms. The thermodynamic conduct concluded the CV adsorption to be spontaneous (negative ?G) and endothermic (positive ?H) in characteristic at ambient temperature i.e., adsorption increases with temperature.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-05-12

How to Cite

Kanoje, B., Dani, U., Shirdhonkar, M., Parikh, J., & Kuperkar, K. (2022). Dye Adsorption Kinetics and Isotherm Study Using Surfactant-Modified Biomass: Influence of pH Substantiated with Quantum Chemical Validation. Journal of Surface Science and Technology, 37(1-2), 67–81. https://doi.org/10.18311/jsst/2021/28588

Issue

Section

Articles
Received 2021-09-07
Accepted 2022-02-16
Published 2022-05-12

 

References

K. S. Bharathi, S. T. Ramesh, Appl. Water Sci., 3, 773, (2013). https://doi.org/10.1007/s13201-013-0117-y. DOI: https://doi.org/10.1007/s13201-013-0117-y

G. Crini, Bioresour. Technol., 97, 1061, (2006). https://doi.org/10.1016/j.biortech.2005.05.001. PMid:15993052. DOI: https://doi.org/10.1016/j.biortech.2005.05.001

I. Tan, A. Ahmad, B. Hameed, J. Hazard. Mater., 154, 337, (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031. PMid:18035483. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.031

V. K. Gupta, Suhas, J. Environ. Manag., 90, 2313, (2009). https://doi.org/10.1016/j.jenvman.2008.11.017. PMid:19264388. DOI: https://doi.org/10.1016/j.jenvman.2008.11.017

S. Ong, C. Lee, Z. Zainal, Bioresour. Technol., 98, 2792, (2007). https://doi.org/10.1016/j.biortech.2006.05.011. PMid:17400446. DOI: https://doi.org/10.1016/j.biortech.2006.05.011

M. Cai, J. Su, Y. Zhu, X. Wei, M. Jin, H. Zhang, C. Dong, Z. Wei, Ultrason. Sonochem., 28, 302, (2016). https://doi.org/10.1016/j.ultsonch.2015.08.001. PMid:26384912. DOI: https://doi.org/10.1016/j.ultsonch.2015.08.001

A. S. Bhatt, P. L. Sakaria, M. Vasudevan, R. P. Pawar, N. Sudheesh, H. C. Bajaj, H. Mody, RSC Adv., 2, 8663, (2012). https://doi.org/10.1039/c2ra20347b. DOI: https://doi.org/10.1039/c2ra20347b

H. Chen, J. Zhao, Adsorption, 15, 381, (2009). https://doi.org/10.1007/s10450-009-9155-z. DOI: https://doi.org/10.1007/s10450-009-9155-z

J. Huang, Y. Liu, Q. Jin, X. Wang, J. Yang, J. Hazard. Mater., 143, 541, (2007). https://doi.org/10.1016/j.jhazmat.2006.09.088. PMid:17097224. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.088

M. Baghdadi, A. Jafari, A. Pardakhti, RSC Adv., 6, 61423, (2016). https://doi.org/10.1039/C6RA08901A. DOI: https://doi.org/10.1039/C6RA08901A

M. Koch, A. Yediler, D. Lienert, G. Insel, A. Kettrup, Chemosphere, 46, 109, (2002). https://doi.org/10.1016/ S0045-6535(01)00102-3. DOI: https://doi.org/10.1016/S0045-6535(01)00102-3

X. Zhang, W. Dong, W. Yang, Chem. Eng. Technol., 233, 14, (2013).

M. Dogan, M. Alkan, A. Turkyilmaz, Y. Ozdemir, J. Hazard. Mater., 109, 141, (2004).

M. K. Sahu, R. K. Patel, RSC Adv., 5, 78491, (2015). https://doi.org/10.1039/C5RA15780C. DOI: https://doi.org/10.1039/C5RA15780C

M. Sarkar, P. Acharya, B. Bhattacharya, J. Colloid Interface Sci., 266, 28, (2003). https://doi.org/10.1016/S0021-9797(03)00551-4. DOI: https://doi.org/10.1016/S0021-9797(03)00551-4

V. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, J. Hazard. Mater., 186, 891, (2011). https://doi.org/10.1016/j.jhazmat.2010.11.091. PMid:21163571. DOI: https://doi.org/10.1016/j.jhazmat.2010.11.091

A. Ozcan, C. Omeroglu, Y. Erdogan, A.S. Ozcan, J. Hazard. Mater., 140, 173, (2007).

A. Ozcan, A.S., J. Hazard. Mater., 125, 252, (2007).

P. Baskaralingam, M. Pulikesi, V. Ramamurthi, S. Sivanesan, Appl. Clay Sci., 37, 207, (2007). https://doi.org/10.1016/j.clay.2007.01.014. DOI: https://doi.org/10.1016/j.clay.2007.01.014

Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, Z. Derriche, Chem. Eng. J., 136, 295, (2008).

O. Maria, C. Pacurariua, S. Gabriela, RSC Adv., 4, 62621, (2014). https://doi.org/10.1039/C4RA10504D. DOI: https://doi.org/10.1039/C4RA10504D

S. Bajpai, A. Jain, Water, 4, 52, (2012). https://doi.org/10.1111/j.1537-2995.2011.03449.x. PMid:22571360. DOI: https://doi.org/10.1111/j.1537-2995.2011.03449.x

S. Chakraborty, S. Chowdhury, P. Saha, Carbohydr. Polym., 86, 1533, (2011). https://doi.org/10.1016/j.carbpol. 2011.06.058. DOI: https://doi.org/10.1016/j.carbpol.2011.06.058

B. Inbaraj, K. Selvarani, N. Sulochana, J. Scient. Ind. Res., 61, 971, (2002).

V. Vadivelan, K. V. Kumar, J. Colloid Interface Sci., 286, 90, (2005). https://doi.org/10.1016/j.jcis.2005.01.007. PMid:15848406. DOI: https://doi.org/10.1016/j.jcis.2005.01.007

I. Mall, S. Upadhyay, Indian J. Environ. Health, 40, 177, (1998).

Y. Ho, Water Resour., 37, 2323, (2003). https://doi.org/10.1016/S0043-1354(03)00002-2. DOI: https://doi.org/10.1016/S0043-1354(03)00002-2

R. Sivaraj, C. Namasivayam, K. Kadirvelu, Waste Manage., 21, 105, (2001). https://doi.org/10.1016/S0956- 053X(00)00076-3. DOI: https://doi.org/10.1016/S0956-053X(00)00076-3

Q. Sun, L. Yang, Water Resour., 37, 1535, (2003). https://doi.org/10.1016/S0043-1354(02)00520-1. DOI: https://doi.org/10.1016/S0043-1354(02)00520-1

S. Olivera, H. B. Muralidhara, K. Venkatesh, V. K. Guna, K. Gopalakrishna, K. Y. Kumar, Carbohydr. Polym., 153, 600, (2016). https://doi.org/10.1016/j.carbpol.2016.08.017. PMid:27561533. DOI: https://doi.org/10.1016/j.carbpol.2016.08.017

A. Kausar, K. Naeem, M. Iqbal, Z.-I.-H. Nazli, H. N. Bhatti, A. Ashraf, A. Nazir, H. S. Kusuma, M. I. Khan, : A review. Z. Phys. Chem. (2021).

T. Vieira, S. E. S. Artifon, C. T. Cesco, P. B. Vilela, V. A. Becegato, A. T. Paulino, Colloid Polym. Sci., 299, 649, (2021). https://doi.org/10.1007/s00396-020-04786-2. DOI: https://doi.org/10.1007/s00396-020-04786-2

B. Simoncic, M. Kert., Dyes Pigm., 54, 221, (2002). https://doi.org/10.1016/S0143-7208(02)00046-3. DOI: https://doi.org/10.1016/S0143-7208(02)00046-3

J. Yang, J. Colloid Interface Sci., 274, 237, (2004). https://doi.org/10.1016/j.jcis.2004.03.028. PMid:15120298. DOI: https://doi.org/10.1016/j.jcis.2004.03.028

C. Kartal, H. Akbas, Dyes Pigm., 65, 191, (2005). https://doi.org/10.1016/j.dyepig.2004.07.003. DOI: https://doi.org/10.1016/j.dyepig.2004.07.003

A. R. Cestari, E. F. S. Vieira, G. S. Vieira, L. E. Almeida, J. Hazard. Mater., B138, 133, (2006). https://doi. org/10.1016/j.jhazmat.2006.05.046. PMid:16797835. DOI: https://doi.org/10.1016/j.jhazmat.2006.05.046

M. Bielska, A. Sobczynska, K. Prochaska, Dyes Pigm., 80, 201, (2009). https://doi.org/10.1016/j.dyepig.2008.05.009. DOI: https://doi.org/10.1016/j.dyepig.2008.05.009

B. Gohain, S. Sarma, R. K. Dutta, J. Mol. Liq., 142, 130, (2008). https://doi.org/10.1016/j.molliq.2008.05.015. DOI: https://doi.org/10.1016/j.molliq.2008.05.015

J. Ma, B. Cui, J. Dai, D. Li, J. Hazard. Mater., 186, 1758, (2011). https://doi.org/10.1016/j.jhazmat.2010.12.073. PMid:21227582. DOI: https://doi.org/10.1016/j.jhazmat.2010.12.073

B. Zhao, W. Xiao, Y. Shang, H. Zhu, R. Han, Arab. J. Chem., 10, S3595, (2017). https://doi.org/10.1016/j. arabjc.2014.03.010. DOI: https://doi.org/10.1016/j.arabjc.2014.03.010

K. Kuperkar, L. Abezgauz, D. Danino, G. Verma, P. Hassan, V. Aswal, D. Varade, P. Bahadur, J. Colloid Interface Sci., 323, 403, (2008). https://doi.org/10.1016/j.jcis.2008.04.040. PMid:18486141. DOI: https://doi.org/10.1016/j.jcis.2008.04.040

L. Abezgauz, K. Kuperkar, P. Hassan, O. Ramon, P. Bahadur, D. Danino, J. Colloid Interface Sci., 342, 83, (2010). https://doi.org/10.1016/j.jcis.2009.08.045. PMid:19939405. DOI: https://doi.org/10.1016/j.jcis.2009.08.045

J. Eastoe, R. F., D. Berti, G. Palazzo, Eds. Elsevier, Amsterdam, 135, (2014).

Crops/Regions/World list/Production Quantity (pick lists), Rice (paddy), 2018. UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2020.

D. Patel, S. Rathod, S. Tiwari, D. Ray, K. Kuperkar, V. Aswal, P. Bahadur, J. Phys. Chem. B, 124, 11750, (2020). https://doi.org/10.1021/acs.jpcb.0c09386. PMid:33305575. DOI: https://doi.org/10.1021/acs.jpcb.0c09386

D. Patel, D. Ray, K. Kuperkar, H. Pal, V. Aswal, P. Bahadur, Polym. Int., 69, 1097, (2020). https://doi.org/10.1002/ pi.5962, DOI: https://doi.org/10.1002/pi.5962

D. Patel, D. Ray, K. Kuperkar, V. Aswal, P. Bahadur, J. Mol. Liq., 316, 113897, (2020). https://doi.org/10.1016/j.molliq. 2020.113897. DOI: https://doi.org/10.1016/j.molliq.2020.113897

Most read articles by the same author(s)