Identification and Characterization of whey Protein, Casein Micelles and Fat Globules in Cow Milk

Jump To References Section

Authors

  • Department of Physics, Sathyabama Insititute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu ,IN
  • Department of Physics, Sathyabama Insititute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu ,IN
  • Department of Physics, Sathyabama Insititute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2020/24328

Keywords:

Atomic Force Microscopy, Cow Milk, Dynamic Light Scattering Study, Inverted Phase Contrast Microscopy, Skimmed milk, Whole Milk, Whey

Abstract

Pasteurized cow milk (whole milk) was used in the present study and also fat was removed from the whole milk to obtain skimmed milk. Whey is the liquid remaining after milk has been curded and strained during the manufacture of cheese. The sample was filtered using a Whatman filter paper to separate the precipitate. The filtrate thus obtained is called whey (devoid of casein and fat). The micrographs of whole milk, skimmed milk and whey were obtained using an inverted phase contrast microscopy. The hydrodynamic size and zeta potential of the samples were obtained using Dynamic light scattering technique. Atomic force microscopy was also performed to understand the surface morphology of whole milk, skimmed milk and whey on mica substrate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-08-20

How to Cite

Murugesan, S., Anitalett, J., & Sabitha, S. (2020). Identification and Characterization of whey Protein, Casein Micelles and Fat Globules in Cow Milk. Journal of Surface Science and Technology, 36(1-2), 83–88. https://doi.org/10.18311/jsst/2020/24328

Issue

Section

Articles
Received 2019-10-16
Accepted 2019-12-20
Published 2020-08-20

 

References

J. Sangeetha and J. Philip, Colloids Surf. A Physicochem. Eng. Asp., 406, 52 (2012). https://doi.org/10.1016/j.colsurfa. 2012.04.049. DOI: https://doi.org/10.1016/j.colsurfa.2012.04.049

Y. D. Livney, Curr Opin Colloid Interface Sci, 15, 73 (2010). https://doi.org/10.1016/j.cocis.2009.11.002. DOI: https://doi.org/10.1016/j.cocis.2009.11.002

A. O. Elzoghby, W. S. El-Fotoh and N. A. Elgindy, J. Control. Release., 153, 206 (2011). https://doi.org/10.1016/j. jconrel.2011.02.010. PMid: 21338636. DOI: https://doi.org/10.1016/j.jconrel.2011.02.010

R. Gebhardt, W. Doster, J. Friedrich and U. Kulozik, Eur. Biophys., 35, 503 (2006). https://doi.org/10.1007/s00249- 006-0058-6. PMid: 16622655. DOI: https://doi.org/10.1007/s00249-006-0058-6

D. G. Dalgleish and M. Corredig, Annu. Rev. Food Sci. Technol., 3, 449 (2012). https://doi.org/10.1146/annurevfood- 022811-101214 PMid: 22385169. DOI: https://doi.org/10.1146/annurev-food-022811-101214

D. G. Dalgleish, D. S. Horne and A. J. R. Law, Biochim. Biophys. Acta Gen. Subj., 991, 383 (1989). https://doi. org/10.1016/0304-4165(89)90061-5 DOI: https://doi.org/10.1016/0304-4165(89)90061-5

S. Marchin, J. L. Putaux, F. Pignon and J. Leonil, J. Chem. Phys., 126, 045101 (2007). https://doi.org/10.1063/1.2409933. PMid: 17286511. DOI: https://doi.org/10.1063/1.2409933

C. Regalado, C. Perez-Perez, E. Lara-Cortes, B. Garcia- Almendarez, Vol. 661, chapter 37, Eds. R. G. Guevara-Gonzalez, I. Torres Pacheco. Research Signpost, Kerala, India; 2006. p. 237-61.

C. Chaves-Lopez, A. Serio, A. Paparella, M. Martuscelli, A. Corsetti, R. Tofalo, Food Microbiol., 42, 117 (2014). https:// doi.org/10.1016/j.fm.2014.03.005. PMid: 24929726. DOI: https://doi.org/10.1016/j.fm.2014.03.005

I. Lopez-Exposito, L. Amigo, I. Recio, Dairy. Sci. Technol., 92, 419 (2012). https://doi.org/10.1007/s13594- 012-0066-5 DOI: https://doi.org/10.1007/s13594-012-0066-5

E Bijl, R. de Vries, H. van Valenberg, T. Huppertz, T. van Hooijdonk, Int. Dairy J., 34, 135 (2014). https://doi. org/10.1016/j.idairyj.2013.08.001. DOI: https://doi.org/10.1016/j.idairyj.2013.08.001

P. Hristov, B. Neov, H. Sbirkova, D. Teofanova, G. Radoslavov, B. Shivachev, Biotechnol. in Anim. Husbandry, 30, 561 (2014). https://doi.org/10.2298/BAH1404561H. DOI: https://doi.org/10.2298/BAH1404561H

El Hadji Mamour Sakho, Elaheh Allahyari, Oluwatobi S. Oluwafemi, Sabu Thomas and Nandakumar Kalarikkal. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, 1st edition Volume 3, Elsvier Inc. Publisher; 2017. p. 37-49.

Y. Zhang, D. Liu, X. Liu, F. Hang, P. Zhou, J. Zhao, H. Zhang, W. Chen, Int. Dairy J., 78, 20 (2018). https://doi. org/10.1016/j.idairyj.2017.10.008. DOI: https://doi.org/10.1016/j.idairyj.2017.10.008

S. L. Carnie, D. Y. C. Chan, C. Lewis, R. R. Manica, R. R. Dagastine, Langmuir, 21, 2912 (2005). https://doi. org/10.1021/la0475371. PMid: 15779966. DOI: https://doi.org/10.1021/la0475371

K.-C. Chang, Y.-W. Chiang, C.-H. Yang, J.-W. Liou, Tzu. Chi. Medical Journal, 24, 162 (2012). https://doi.org/10.1016/j. tcmj.2012.08.002. DOI: https://doi.org/10.1016/j.tcmj.2012.08.002

W. Jia, D. Xiao, Z. Yun, W. Lan, T. Bing-qiang, X. Bi-jun, Agric. Sci. China, 8, 1458 (2009). https://doi.org/10.1016/S1671- 2927(08)60359-4.