SiO2 Dielectric Micro-Pattern Layer for Solar Cell Application

Jump To References Section

Authors

  • Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, 144 Xuann Thuy Road, Cau Giay District, Hanoi ,VN

DOI:

https://doi.org/10.18311/jsst/2020/24109

Keywords:

Antireflection, Micro-Pattern, SiO2 Dielectric Layer, Solar Cell

Abstract

Micro-patterns were created in a silicon dioxide (SiO2) dielectric layer (called SiO2 dielectric micro-pattern layer) via the photolithography and dry etching techniques. The SiO2 dielectric micro-pattern layer was utilized as an antireflection layer for solar cell application. The influences of structure of micro-pattern on the optical and electrical characteristics of solar cell were also investigated in detail. An improved performance of the GaAs solar cell by combination of antireflection coating layers and micro-pattern was observed. An enhancement in short circuit current density of 7.5% and conversion efficiency (about 1.2% absolute) were achieved in a cell coupling with the SiO2 dielectric 4 μm period micro-pattern layer compared to those of a reference cell. The influences of the SiO2 dielectric micro-pattern layer on other performance characteristics such as open circuit voltage and fill factor were not clearly observed. Light beam induced current measurement was also carried out to indicate the contribution of the light trapping and light scattering effects on the cell performance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-08-20

How to Cite

Dinh Lam, N. (2020). SiO<sub>2</sub> Dielectric Micro-Pattern Layer for Solar Cell Application. Journal of Surface Science and Technology, 36(1-2), 61–65. https://doi.org/10.18311/jsst/2020/24109

Issue

Section

Articles
Received 2019-08-21
Accepted 2020-06-12
Published 2020-08-20

 

References

K. S. Han, J. H. Shin, W.Y. Yoon and H. Lee, Sol. Energy Mater. Sol. Cells, 95, 288 (2011). DOI: https://doi.org/10.1016/j.solmat.2010.04.064

H. Bencherif, L. Dehimi, F. Pezzimenti and F. G. Corte, Optik. 182, 682 (2019). DOI: https://doi.org/10.1016/j.ijleo.2019.01.032

J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, Sol. Energy Mater. Sol. Cells, 95, 2576 (2011). DOI: https://doi.org/10.1016/j.solmat.2011.03.005

B. Paivanranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen and H. P. Herzig, Microelectron. Eng.,85, 1089 (2008). DOI: https://doi.org/10.1016/j.mee.2008.01.011

D. Li, F. Huang and S. Ding, Appl. Surf. Sci., 257, 9752 (2011). DOI: https://doi.org/10.1016/j.apsusc.2011.05.126

G. Zhang, J. Zhao and M. A. Green, Sol. Energy Mater. Sol. Cells, 51, 393 (1998). DOI: https://doi.org/10.1016/S0927-0248(97)00258-4

S. Jung, Y. Kim, S. Kim and S. Yoo, Curr. Appl. Phys., 11, 538 (2011). DOI: https://doi.org/10.1016/j.cap.2010.09.010

X. Yan, N. Chen, F. Suhaimi, L. Zhang, X. Gong, X. Zhang and S. Duttagupta, Appl. Opt., 58, E1 (2019). DOI: https://doi.org/10.1364/AO.58.0000E1

G. Womack, K. Isbilir, F. Lisco, A. Taylor and J. M. Walls, Surf. Coat. Tech., 358, 76 (2019). DOI: https://doi.org/10.1016/j.surfcoat.2018.11.030

I. Yu, S. Wu, L. Dumont, C. Labbé and F. Gourbilleau, J. Rare Earths, 37, 515 (2019). DOI: https://doi.org/10.1016/j.jre.2018.07.014

C. Chen, H. Tsai, Y. Wang, T. Su, C. Yang, W. Lin, Z. Lin, J. Huang and Y. Chueh, J. Mater. Chem. A., 7, 11452 (2019) DOI: https://doi.org/10.1039/C9TA01960J

T. Sertel, Y. Ozen, V. Baran, S. Ozcelik, J. Alloys Compd., 806, 439 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.257

J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Appl. Phys. Lett.,73, 1991 (1998). DOI: https://doi.org/10.1063/1.122345

M. Tao, W. Zhou, H. Yang, and L. Chen, Appl. Phys. Lett., 91, 081118 (2007). DOI: https://doi.org/10.1063/1.2775805

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych and P. Paneck, Sol. Energy Mater. Sol. Cells, 72, 291 (2002). DOI: https://doi.org/10.1016/S0927-0248(01)00177-5

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo and D. Knipp, Opt. Exp., 17, 23058 (2009). DOI: https://doi.org/10.1364/OE.17.023058

J. Zhao, A. Wang, P. Altermatt and M. A. Green, Appl. Phys. Lett., 66, 3636 (1995). DOI: https://doi.org/10.1063/1.114124

W. Qarony, M. I. Hossain, A.Salleo, D. Knipp and Y. H. Tsang, Mater. Tod. Ener., 11, 106 (2019). DOI: https://doi.org/10.1016/j.mtener.2018.10.001

D. Eisenhauer, C. T. Trinh, D. Amkreutz and C. Becker, Sol. Energy Mater. Sol. Cells, 200, 109928 (2019). DOI: https://doi.org/10.1016/j.solmat.2019.109928

D. Canteli, I. Torres, S.Fernández, J. D. Santos, M. Morales and C. Molpeceres, Appl. Sur. Sci., 463, 775 (2019). DOI: https://doi.org/10.1016/j.apsusc.2018.08.267

M. K. Basher, M. K. Hossain and M. A. R. Akand, Optik. 176, 93 (2019). DOI: https://doi.org/10.1016/j.ijleo.2018.09.042

Y. Chang, Z. Li, H. Kuo, T. Lu, S. Yang, L. Lai, L. Lai and S. Wang, Semicond. Sci. Technol., 24, 085007 (2009). DOI: https://doi.org/10.1088/0268-1242/24/8/085007

P. Qu, K. Wang, J. Li, S. Wang, and W. Wei, Mater. Exp.,10, 556 (2020). DOI: https://doi.org/10.1166/mex.2020.1672

Y. Sekman, N. Felde, L. Ghazaryan, A. Szeghalmi, and S. Schröder, Appl. Opt., 59, A143 (2020). DOI: https://doi.org/10.1364/AO.59.00A143

J. Wang, H. Zhang, L. Wang, K. Yang, L. Cang, X. Liu, and W. Huang, ACS Appl. Ener. Mater., 3, 4484 (2020). DOI: https://doi.org/10.1021/acsaem.0c00175

Chen, H. Yang, M. Tao and W. Zhou, Proc. SPIE 7046, Opt. Mod. Meas. Sol. Ener. Sys. II, 704608 (2008).