Wear and Hardness Studies of Graphene Decorated with Graphene Quantum Dots (G-D-GQD) Embedded Epoxy Nano Composites

Jump To References Section

Authors

  • School of Mechanical Engineering, VIT University, Vellore – 632014, Tamil Nadu ,IN
  • School of Mechanical Engineering, VIT University, Vellore – 632014, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2019/20103

Keywords:

Graphene Decorated Graphene Quantum Dots (G-D-GQD), SEM, Epoxy Composites, Wear and Hardness

Abstract

The paper discusses about the wear and micro hardness behavior of Graphene Decorated with Graphene Quantum Dots (G-D-GQD) reinforced epoxy composites. The samples were prepared by open mold casting method by adding 0.25–1 wt. % (in an interval of 0.25%) of GDGQD and evaluated on a reciprocating wear tester configuration for wear and coefficient of friction properties. The micro-hardness testing of the G-D-GQD particles embedded epoxy composites has been performed and the hardness value results were compared with neat epoxy to find the improvement in hardness. Significant improvements in the hardness and wear resistance of the epoxy nanocomposites was obtained by the embedding of G-DGQD fillers, which is due to the efficient bonding of GDGQD filler with the epoxy matrix. Scanning Electron Microscope (SEM) images of the worn composites were analysed to get an insight into the morphology of the surfaces. Furthermore, the coefficient of friction of the composites got increased with the wt. % of fillers in the base material, but due to the superior bond strength and lesser agglomeration of the particles, the Vicker's hardness improved and the wear loss reduced. Hence the surface area coverage of G-D-GQDs got a significant role in the reduced wear loss and thereby coming to a threshold value. The study concludes by suggesting that 0.25 wt. % GDGQD/epoxy composites shown a least wear rate and increased hardness of 0.023% and 26%, respectively thereby suggesting application involving reduced wear rates.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-06-25

How to Cite

George, M., & Mohanty, A. (2019). Wear and Hardness Studies of Graphene Decorated with Graphene Quantum Dots (G-D-GQD) Embedded Epoxy Nano Composites. Journal of Surface Science and Technology, 35(1-2), 45–53. https://doi.org/10.18311/jsst/2019/20103

Issue

Section

Articles
Received 2018-03-06
Accepted 2019-02-22
Published 2019-06-25

 

References

N. Grassie, M. I. Guy, and N. H. Tennent, 12(1), 65–91 (1985). DOI: https://doi.org/10.1016/0141-3910(85)90057-6

M. B. Neiman, B. M. Kovarskaya, L. I. Golubenkova, A. S. Strizhkova, I. I. Levantovskaya, and M. S. Akutin, 56(164), 383–389 (1962). DOI: https://doi.org/10.1002/pol.1962.1205616408

R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng., 445-446, 567–578. (2007). https://doi.org/10.1016/j.msea.2006.09.077 DOI: https://doi.org/10.1016/j.msea.2006.09.077

M. Merzlyakov, G. B. McKenna and S. L. Simon, Compos. Appl. Sci. Manuf., 37(4), 585–591 (2006). https://doi.org/10.1016/j.compositesa.2005.05.013 DOI: https://doi.org/10.1016/j.compositesa.2005.05.013

D. King and J. P. Bell, 221–236 (1988). DOI: https://doi.org/10.1021/bk-1988-0367.ch016

Z. Ahmad, M. P. Ansell and D. Smedley, Mater. Sci. Eng, 17, 012011 (2011). DOI: https://doi.org/10.1088/1757-899X/17/1/012011

V. Georgakilas, J. N. Tiwari, K. C Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim and R. Zboril, Chem. Rev. 116, 5464−5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620 PMid:27033639 DOI: https://doi.org/10.1021/acs.chemrev.5b00620

A. Mohanty and V. K. Srivastava, Tribol. Trans., 58, 11421150 (2015). https://doi.org/10.1080/10402004.2015.10396 81 DOI: https://doi.org/10.1080/10402004.2015.1039681

Y. Peng, Z. Wang, and K. Zou, Langmuir, 31(28), 7782– 7791, (2015). https://doi.org/10.1021/acs.langmuir.5b00422 PMid:25992590 DOI: https://doi.org/10.1021/acs.langmuir.5b00422

C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang and Q. Xue; Carbon, 114, 356-366 (2017). https://doi.org/10.1016/j.carbon.2016.12.044 DOI: https://doi.org/10.1016/j.carbon.2016.12.044

X. J. Shen, X. Q. Pei, S. Y. Fu and K. Friedrich, Polymer, 54, 12341242 (2013). https://doi.org/10.1016/j.polymer.2012.12.064 DOI: https://doi.org/10.1016/j.polymer.2012.12.064

X. J. Shen, X.Q. Pei, Y. Liu and S. Y. Fu, Composites: Part B, 57, 120–125 (2014). DOI: https://doi.org/10.1016/j.compositesb.2013.09.050

A. Wolk, M. Rosenthal, S. Neuhaus, K. Huber, K Brassat, J. K. N. Lindner, R. Grothe, G. Grundmeier, W. Bremser and R. Wilhelm, Scientific Reports, 8, Article number: 5843 (2018). https://doi.org/10.1038/s41598-018-24062-2 PMid:29643400 PMCid:PMC5895846 DOI: https://doi.org/10.1038/s41598-018-24062-2

N. V. Lakshmi and P. Tambe, Compos. Interfac., 1568-5543 (2017).

M. Saha, P. Tambe and S. Pal, Compos. Interfac., 1568-5543 (2016).

H. Y. Marghalani, J. Appl. Oral. Sci. 18(1), 59–67 (2010). https://doi.org/10.1590/S1678-77572010000100011 PMid:20379683 PMCid:PMC5349034 DOI: https://doi.org/10.1590/S1678-77572010000100011

J. A. King, D. R. Klimek, I. Miskioglu and G. M. Odegard, J. Compos. Mater., 1–10 (2014).

H. B. Kulkarni, P. Tambe and G. M. Joshi, Compos. Interfac. 25(5-7) (2018). DOI: https://doi.org/10.1080/09276440.2017.1361711

N. Gobi, D. Vijayakumar, O. Keles and F. Erogbogbo, ACS Omega, 4356-4362 (2017). DOI: https://doi.org/10.1021/acsomega.6b00517

K. K. Panchagnula, P. Kuppan, J. Mater. Sci. Tech. 22387854 (2018).

E. Omrani, P. L. Menezes, P. K.Rohatgi, Engineering Science and Technology, an International Journal , 19(2), 717-736 (2016). DOI: https://doi.org/10.1016/j.jestch.2015.10.007

H. Düzcükoğlu, Åž. Ekincia, í–. S. Åžahin, A. Avcı, M. Ekrem, M íœnaldı, Tribol. Trans., 58(4) (2015). https://doi.org/10.10 80/10402004.2014.998358

R. Schroeder, F. W. Torres, C. Binder, A. N. Klein, J. D. B. de Mello, Wear, 301, 717–726 (2013). https://doi.org/10.1016/j.wear.2012.11.055 DOI: https://doi.org/10.1016/j.wear.2012.11.055