Study on Hardness and Microstructural Properties of Ti-6Al-4V Alloy using Overlapped Multipass Laser Transformation Hardening under Optimized Test Conditions

Jump To References Section

Authors

  • School of Mechanical Engineering, SVERI'S College of Engineering, Gopalpur, Pandharpur – 413304, Solapur, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jsst/2019/17873

Keywords:

Laser Transformation Hardening, Nd, YAG Laser, Overlapped, Scanning Electron Microscopy, Ti-6Al-4V, Vickers Microhardness
MATERIALS SCIENCE, METALLURGY AND SURFACE ENGINEERING

Abstract

In this research paper, overlapped multipass Laser Transformation Hardening (LTH) of Ti-6Al-4V titanium alloy sheet of 2 mm thickness was analyzed experimentally for uniformly intense, CW spherical beam moving with constant speed using 2 kW Nd: YAG laser. Experiments were conducted for optimized two sets of laser process parameters: 1. High Laser Process Parameter (HLPP), Lp = 800 Watts, Ss = 3000 mm/min, Fp = -10 mm, with heat input 180 J/cm and 2. Low Laser Process Parameter (LLPP), Lp = 600 Watts, Ss = 2000 mm/min, Fp = -10 mm, with heat input 160 J/cm respectively having same Fp = -10 mm. The maximum, minimum and average hardened depths of 0.27, 0.19 and 0.23 mm respectively, achieved for HLPP were found to be minimum, as compared to the maximum, minimum and average hardened depths of 0.38, 0.29 and 0.33 mm, respectively, for LLPP. Measurements of Vickers micro-hardness survey of the hardened zone of the laser processed Ti-6Al-4V alloy are presented. Vickers micro-hardness of an as-received two-phase (α+β) Ti-6Al-4V titanium alloy is 328 HV. The results showed that Vickers micro-hardness on top of the surface (TS), in hardened or fusion zone (Fz), at the interface of Fz -Haz, in the heat affected zone (Haz) is higher than the bulk material. The high hardness values of 450 HV and 445 HV were investigated on the top surface for high and low laser process parameters respectively. This can be the quality characteristics of the dissolution of small amounts of oxygen, nitrogen, and carbon with hard martensite α' (transformed β) formation, thereby ensuring an increase in wear resistance of laser treated hardened surface of Ti-6Al-4V considerably in relation to the untreated or base alloy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-01-31

How to Cite

Sawant Badkar, D. (2020). Study on Hardness and Microstructural Properties of Ti-6Al-4V Alloy using Overlapped Multipass Laser Transformation Hardening under Optimized Test Conditions. Journal of Surface Science and Technology, 35(3-4), 82–96. https://doi.org/10.18311/jsst/2019/17873
Received 2017-08-08
Accepted 2018-07-26
Published 2020-01-31

 

References

W. Peng, W. Zeng, Q. Wang and H. Yu, Mater. Des., 51, 95 (2013). https://doi.org/10.1016/j.matdes.2013.04.009 DOI: https://doi.org/10.1016/j.matdes.2013.04.009

Y. Ning, M. W. Fu, H. Hou, Z. Yao and H. Guo, Mater. Sci. Eng., 528, 1812 (2011). https://doi.org/10.1016/ j.msea.2010.11.019 DOI: https://doi.org/10.1016/j.msea.2010.11.019

Y. B. Tan, J. L. Duan, L. H. Yang, W. C. Liu, J. W. Zhang and R. P. Liu, J. Mater. Sci. Eng., 609, 226 (2014). https://doi.org/10.1016/j.msea.2014.05.014 DOI: https://doi.org/10.1016/j.msea.2014.05.014

I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, J. Alloy Comp., 583, 404(2014). https://doi.org/10.1016/j.jallcom.2013.08.183 DOI: https://doi.org/10.1016/j.jallcom.2013.08.183

A. Patnaik, N. Poondla, U. BaithiniUdaykar and T. S. Srivastan, Mater. Manuf. Process., 26, 311 (2011). https://doi.org/10.1080/10426914.2010.544806 DOI: https://doi.org/10.1080/10426914.2010.544806

S. K. Ghosh, and S. Chatterjee, Mater. Manuf. Process., 25, 1317 (2010). DOI: https://doi.org/10.1080/10426914.2010.520793

K. Dubeyand V. Yadava, J. Mater. Process Tech., 195, 15 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.041 DOI: https://doi.org/10.1016/j.jmatprotec.2007.05.041

C. Yao, B. Xu, J. Huang, P. Zhang and Y. Wu, Optic Laser Eng., 48, 20 (2014). https://doi.org/10.1016/j.optlaseng.2009.05.001 DOI: https://doi.org/10.1016/j.optlaseng.2009.05.001

M. Babic, J. Balic, M. Milfelner, I. Beli, P. Kokol, M. Zorman and P. Panjan, Adv. in Prod. Engg. Mgmt., 8, 25 (2013). DOI: https://doi.org/10.14743/apem2013.1.150

D. S. Badkar, K. S. Pandey and G. Buvanashekaran, Int. J. Adv. Manuf. Tech., 59, 169 (2012). https://doi.org/10.1007/ s00170-011-3492-2 DOI: https://doi.org/10.1007/s00170-011-3492-2

H. Ghorbani, M.H.Sohi, M.J. Torkamany, B. Mehrjou, J. Mat. Engg. Perform. 24, 3634 (2015). DOI: https://doi.org/10.1007/s11665-015-1615-x

Li. Ruifeng, Jin Yajuan, Li. Zhuguo and Qi Kai, J. Mater. Eng. Perform., 23, 3085 (2014). DOI: https://doi.org/10.1007/s11665-014-1146-x

D. I. Adebiyi, O. Fatoba, S. Pityana and P. Popoola, 30th Int. Confe on Surface Modification Tech. (SMT30)., Milan, Italy (2016).

D. S. Badkar, K. S.Pandey and G. Buvanashekaran, Trans. Nonferr. Met. Soc. of China., 20, 1078 (2010). DOI: https://doi.org/10.1016/S1003-6326(09)60261-2

J. D. Hahn, Y. C. Shin and M. J. M. Krane, Surf. Eng., 23, 78 (2013). https://doi.org/10.1179/174329407X169467 DOI: https://doi.org/10.1179/174329407X169467

B. G. Yan and J. C. Liu, Mater. Tech., 27, 5 (2014). https://doi.org/10.1179/175355511X13240279339725 DOI: https://doi.org/10.1179/175355511X13240279339725

F. Qiu, J. Uusitalo and V. Kujanpää. J. Surf. Engg., 29, 34 (2014). DOI: https://doi.org/10.1179/1743294412Y.0000000049

J. Ciurana, G. Arias and T. Ozel, Mater. Manuf. Process., 24, 358 (2009). https://doi.org/10.1080/10426910802679568 DOI: https://doi.org/10.1080/10426910802679568

L. J. Yang, S. Jana, S. C. Tarn, L. E. N. Lim, Mater. Manuf. Process., 9, 475 (2007). https://doi.org/10.1080/10426919408934919 DOI: https://doi.org/10.1080/10426919408934919

C. De. Formanoir, A. Brulard, S. Vivès, G. Martin, F. Prima, S. Michotte, E. Rivière, A. Dolimont and S. Godet. J. Mat. Res.Letters., 5, 201 (2016). DOI: https://doi.org/10.1080/21663831.2016.1245681

D. S. Badkar. J Mater Metall Eng., 7, 35 (2017).

D. S. Badkar, Journal of Phy., 6, 22 (2017).

D. S. Badkar, K. S. Pandey and G. Buvanashekaran, J. Mats. Met. Engg., 5, 1 (2015).

Laser materials processing lab, WRI, BHEL, 2008-2009.