Green Synthesis of Copper Nanoparticles and their Antibacterial Property

Jump To References Section

Authors

  • Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032 ,IN
  • Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032 ,IN
  • University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela ,ES
  • University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela ,ES
  • Department of Chemistry, Sree Chaitanya College, Habra, West Bengal ,IN

DOI:

https://doi.org/10.18311/jsst/2015/1709

Keywords:

Antibacterial Activity, Copper Nanoparticle, Green Synthesis

Abstract

We report the synthesis of copper nanoparticle using a completely green protocol. Aqueous copper sulphate solution was used as a precursor of copper nanoparticle whereas L-ascorbic acid and starch acted as reducing agent and stabilizer respectively. Formation of copper nanoparticle was confirmed by colour, UV-VIS spectroscopy and X-Ray Diffraction (XRD) results. The as-synthesized copper nanoparticles show characteristic plasmonic band at 590 nm. High-Resolution Electron Microscopy (HRTEM) shows almost spherical particles having average diameters of 5.7 ± 1.8 nm. As-synthesized copper nanoparticle exhibits antibacterial activity for both Gm-positive bacteria, Bacilus subtilis and Gm-negetive bacteria, Escherecia coli. Plate count and Minimum Inhibitory Concentration (MIC) studies show higher susceptibility of B. subtilis towards copper nanoparticle

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-06-17

How to Cite

Dinda, G., Halder, D., Vazquez-Vazquez, C., Arturo Lopez-Quintela, M., & Mitra, A. (2015). Green Synthesis of Copper Nanoparticles and their Antibacterial Property. Journal of Surface Science and Technology, 31(1-2), 117–122. https://doi.org/10.18311/jsst/2015/1709

Issue

Section

Articles

 

References

T. K. Sau and A. L. Rogach., Adv. Mater., 22 (16), (2010).

L. L. Beecroft and C. K. Ober, Chem. Mater., 9 (6), 1302,(1997).

B. C. Gates, Chem. Rev., 95, 511, (1995).

P. V. Kamat, Chem. Rev., 93, 267 (1993).

N. A. Dhas, C. P. Raj and A. Gedanken. J. Chem Mater., 10,1446 (1998).

R. V. Kumar, Y. Mastai, Y. Diamant and A. Gedanken, J.Mater Chem., 11, 1209 (2001).

B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim,J. Colloid Interface Sci., 311, 417 (2007).

X. Y. Song, S. X. Sun, W. M. Zhang and Z. L. Yin, Colloid Interface Sci., 273, 463 (2004).

C. Vázquez-Va?zquez, M. Bañobre-Lo?pez, A. Mitra, M. A. Lo?pez-Quintela and J. Rivas. Langmuir, 25, 8208 (2009).

W. U. Songping and S. Meng, J. Mat. Lett., 60, 2438 (2006).

Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou and C. Wong, ACS Appl. Mater. Interfaces, 6, 560 (2014).

W. Yu, H. Xie, L. Chen, Y. Li and C. Zhang, Nanoscale Res.Lett., 4, 465 (2009).

M. Biçer and I. ?i?man, Powder Technol., 198, 279 (2010).

P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc.,125, 13940 (2003).

L. Behlau and G. Widmann, Thermal Analysis Applications: Food Handbook. Mettler-Toledo International Inc.

V. K. Sharma, R. A. Yngard and L. Yekatarina, Adv. Colloid Interface Sci., 145, 83 (2009).

G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar and S. Sivaramakrishnan, Colloids Surf. B: Biointerfaces, 95, 235 (2012).

S. Kumar, M. Singh, D. Halder and A. Mitra, Colloids and Surf. A: Physicochemical and Engineering Aspects, 449, 82

(2014).

S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007).

Z. Lu, K. Rong, J. Li, H. Yang and R. Chen, J. Mater. Sci., 24, 1465 (2013).

A. Panacek, L. Kv?tek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Evecna, and R. Zboril, J. Phys.Chem B., 110, 16248 (2006).

M. Veerapandian and S. Sadhasivam, J. Choi and K. Yun, Chem. Eng. J., 209, 558 (2012).