Microstructural and Mechanical Properties of Cu-based Alloy Manufactured by Self-Propagating High-Temperature Synthesis Method

Jump To References Section

Authors

  • Laboratoire LEREC, Departement de Physique, Universite de Annaba ,DZ
  • Laboratoire LEREC, Departement de physique, Universite de Annaba ,DZ
  • Laboratory LIMHP. UPR 1311 CNRS, Universite Paris XIII, 99 avenue J.-B. Clement, 93430 Villetaneuse ,FR

DOI:

https://doi.org/10.18311/jsst/2017/16264

Keywords:

CuZnAl Alloys, Hysteresis, Phase transformation, Psuedoelasticity, SHS Proceeding.

Abstract

Microstructure and properties of Cu1-xZn1-yAl1-z ranging through (0.29 <X< 0.30; 0.74 <Y< 0.75; and 0.83 <Z< 0.96) alloys obtained by the Self- propagating High-temperature Synthesis (SHS) were examined. The microstructural and mechanical properties were examined, respectively by X-ray diffraction, tensile tests and Brinell hardness. The obtained results showed that the modification of composition lead to the formation of new phases. Therefore, this microstructure affects strongly the mechanical properties of the selected samples. In this study, we will also highlight the SHS technology and prove that it can alternate the conventional methods regarding the development of a Shape Memory Alloys (SMAs).

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-11-03

How to Cite

Amiour, Y., Zemmour, K., & Vrel, D. (2017). Microstructural and Mechanical Properties of Cu-based Alloy Manufactured by Self-Propagating High-Temperature Synthesis Method. Journal of Surface Science and Technology, 33(3-4), 121–126. https://doi.org/10.18311/jsst/2017/16264
Received 2017-06-08
Accepted 2017-10-06
Published 2017-11-03

 

References

A. Creuziger and W. C. Crone, Mater Sci Eng., A, 498, 404– 411 (2008). Crossref

Z. Xiao, Z. Li, M. Fang, S. Xiong, X. Sheng and M. Zhou, Mater. Sci. Eng., A, 488, 266–272 (2008).

H. Xu and S. Tan, Scripta. Metall. Mater., 33(5): 749−754 2005.

J. L. Pelegrina and R. Romero, Mater. Sci. Eng. A, 282(1−2) 16−22 (2000).

J. Pons, M. Masse and R. Portier, Mater. Sci. Eng. A , 273−275, 610−615 (1999).

M. M. Ahmed, Portugaliae Electrochimica Acta, 24, 1−22 (2006).

G. Lojen, I. Anzel, A. Kneissl, A. Krizman, E. Unterweger, B. Kosec and M. Bizjak, J. Mater. Process. Tech. 162−163, 220−229 (2012).

L. Gomidzelovic, E. Pozega, A. Kostov and N. Vukovic, Materials Testing, 56(6), 486−489 (2014).

N. Kayali, R. Zengin and O. Adigüzel, Metall. Mater. Trans., A, 31A, 349–354 (2000).

M. Eskil, Master Thesis, (in Turkish) Firat. University, Elazig, Turkey, 2000.

M. H. Wu, J. Perkins and C. M. Wayman, Acta Metall. 37, 1821–1837 (1989). Crossref

M. H. Wu and C. M. Wayman, Scr. Metall. Mater., 25, 1635– 1640 (1991). Crossref

S. S. Leu and C. T. Hu, Metall. Trans., A, Phys. Metall. Mater. Sci., 22A, 25–33 (1991).

D. W. Roh, E. S. Lee and Y. G. Kim, Metall. Trans., A, Phys. Metall. Mater. Sci. 23A, 2753–2760 (1992).

H. M. Rietveld, J. Appl. Crystallogr., 2, 65–71 (1969). Crossref

R. A. Young and D. B. Wiles, J. Appl. Crystallogr., 15, 430–438 (1982). Crossref

T. W. Duering, K. N. Melton, D. Stockel and C. M. Wayman (eds.) London Buttreworth- Heinemann, 1990.

E. Patoor and M. Berveiller (eds), Paris Editions Hermès, 1994.