Enhanced Dielectric Properties of Polypropylene based Composite using Zinc Oxide Nanorods Filler

Jump To References Section

Authors

  • Department of Physics, Sathyabama University, Chennai-600119, Tamil Nadu ,IN
  • Center for Nanoscience and Nanotechnology, Sathyabama University, Chennai-600119, Tamil Nadu ,IN
  • Department of Physics, Sathyabama University, Chennai-600119, Tamil Nadu ,IN ORCID logo http://orcid.org/0000-0003-4350-5239

DOI:

https://doi.org/10.18311/jsst/2017/16187

Keywords:

Film Capacitor, Dielectric Properties, Polypropylene, Zinc Oxide Nanorods Composites.
Thin films

Abstract

Polypropylene and zinc oxide nanorods composites were prepared by combination of solution and mixture melting methods. Dielectric properties of the composite thin films were studied to see if zinc oxide nanorods have effect on the dielectric properties of polypropylene thin film. Introduction of zinc oxide nanorods at low filler content in the polypropylene matrix significantly improves the dielectric constant of the matrix. Simultaneously the structure of the composites was characterized by UV, XRD and SEM to understand the features in the structure that determine the functionality of the material. Composites with different weight percentage of zinc oxide nanorods show better absorption in the UV region compared to polypropylene matrix. This is due to the inherent capability of nano zinc oxide to absorb in the UV region. X-ray diffraction pattern of nanocomposites show sharp and highly intense peaks whereas neat polypropylene shows less intense peaks. This may due to the development of crystallinity in the polymer. Uniform distribution of zinc oxide which have a width of around 160-200 nm is observed in the SEM photographs of composites.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-11-03

How to Cite

Sharmila, D. J., Brijitta, J., & Sampathkumar, R. (2017). Enhanced Dielectric Properties of Polypropylene based Composite using Zinc Oxide Nanorods Filler. Journal of Surface Science and Technology, 33(3-4), 115–120. https://doi.org/10.18311/jsst/2017/16187
Received 2017-05-25
Accepted 2017-09-15
Published 2017-11-03

 

References

C. S. Reddy and C. K. Das, J. Appl. Polym. Sci., 102, 2117 (2006). DOI: 10. 1002/app. 24131 Crossref

G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris and G. P. Karayannidis, Thermochim. Acta., 247, 117 (2005). DOI:10.1016/j.tca.2004 09.001. Crossref

O. H. Lin, H. M. Akil and Z. A. M. Ishak, Polym. Compo., 30: 1693 (2009). DOI:10.1002/pc.20744. Crossref

P. B. Leng, H. M. Akil and O. H. Lin, J. Compos. Sci. Tech. 26, 761 (2007). DOI:10.1016/j.compscitech.2012.01.001 Crossref

O. H. Lin, Z. A. M. Ishak and H. M. Akil, Mater. Des., 30(3), 748 (2009). DOI:10.1016/j.matdes.2008.05.007. Crossref

J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf and I. Jasiuk, Mater. Sci. Eng., 393, 1(2005). DOI: 10.1016/j. msea.2004.09.044. Crossref

M. Avella, F. Bondioli, C. Valeria, E. Di Pace, M. E. Errico, A. M. Ferrari , B. Focher and M. Malinconico, Compos. Sci. Tech., 66, 886 (2006). DOI:10.1016/j.compscitech.2005.08.014. Crossref

J. Vera-Agullo, G. Gloria-Pereira, H. Varela-Rizo, G. L. Jose and I. Martin-Gullon, Compos. Sci. Tech., 69, 1521 (2009). DOI: 10.1016/j.compscitech.2008.11.032 Crossref

B. Ha-da, G Zhao-xia and Y Jian, Chin. J. Polymer. Sci., 27, 393 (2009). DOI:10.1142/S0256767909004059. Crossref

X. Hesheng, W. Qi, L. Kanshe and H. Guo-Hua, J. Appl. Polymer. Sci., 93, 378 (2004). DOI:10.1002/app.20435. Crossref

K. Prashantha, J. Soulestin, M. F. Lacrampe, M. Claes, G. Dupin and P. Krawczak, eXPRESS Poly. Letters, 2, 735 (2008). DOI:10.3144/expresspolymlett.2008.87. Crossref

Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui, Z. Chen and W. Fan. Polymer. Degrad. Stabil., 82, 127 (2003). DOI:10.1016/S0141-3910(03)00173-3 Crossref

P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa and A. Usuki, Macromolecules, 35, 2042 (2002). DOI:10.1021/ma010852z. Crossref

Y. Dang, Y. Wang, Y. Deng, M. LI, Y. Zhang and Zhiweizhang, Progr. Nat. Sci., 21, 216 (2011). DOI:10. 1016/S1002-0071(12)60033-1. Crossref

J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally and P. Yang, J. Phys. Chem., 105, 11387 (2001). DOI:10.1021/jp012304t. Crossref

H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, J. Phys. Chem. B, 101, 2598 (1997). DOI:10.1021/jp962918b. Crossref

S. Mahmud, M. J. Abdullah, G. A. Putrus, J. Chong and A. K. Mohamad, Synth. React. Inorg. Met. Org. Chem., 36, 155 (2006). DOI:10.1080%2F15533170500524462.

A. Becheri, M. Dürr, P. L. Nostro and P. Baglioni, Journal of Nanoparticle Research 10, 679 (2008). DOI:10.1007/s11051-007-9318-3. Crossref

Y. W. Heo, L. C. Tien and D. P. Norton, Appl. Phys. Lett., 85, 11 (2004). DOI:10.1063/1.1792373. Crossref

B. D. Cullity, Elements of X-ray diffraction, AddissonWesley, 2nd edition, (1978).

N. Kiomarsipour and R. S. Razavi, Superlattice. Microst., 52, 704 (2012). DOI:10.1016/j.spmi.2012.07.003. Crossref

Z. L. Wang, Mater. Today, 7, 26 (2004). DOI:10.1016/S13697021(04)00286-X. Crossref

A. Umar, S. H. Kim, E. K. Sun and Y. B. Hahn, Chem. Phys. Lett., 440, 110 (2007). DOI:10.1016/j.cplett.2007.04.006. Crossref

O. H. Lin, H. MdAkil, and S. Mahmud, Adv. Compos. Lett., 18, 83 (2009). DOI:http://www.acletters.org/pdf/18-3-2.pdf

R. Wahab, S. G. Ansari, Y. S. Kim, M. A. Dar, H. S. Shin, J. Alloy. Comp., 461, 66 (2008). DOI:10.1016/j.jallcom.2007.07.029. Crossref

G. Mani, Q. Fan, C. U. Samuel, Y. Yang, J. of Appl. Poly. Science, 97, 218 (2005). DOI:10.1002/app.21750. Crossref

Z. M. Dang, L. Wang and Y. Yin, Adv. Mater., 19, 852 (2007). DOI:10.1002/adma.200600703. Crossref