A Review on Herbal Remedies for Alzheimer’s Disease

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara – 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2022/29277

Keywords:

Alzheimer’s Disease, Cognitive Function, Disorder, Beta-Amyloid Plaques, Herbal Drugs, Memory, Neurodegenerative Tau Protein

Abstract

Among the neurodegenerative disorders, Alzheimer’s disease is the most common type where the individual suffers from dementia. It usually affects citizens aged 65 and above. Its high prevalence and debilitating effects call for the need of effective therapeutic interventions to deal with this grave disease. The inefficiency of currently available therapeutic options pushes our attention towards finding effective alternative therapeutic options to either successfully prevent or treat AD. Herbal remedies are a potential gold mine that offer hope against this crippling disease. The aim of this review is to throw a light on the potential of a few potential and promising herbal which can provide an alternative therapeutic intervention for the prevention and management of AD amongst a plethora of herbal drugs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-04-19

How to Cite

Prashant Mehta, S., & Balaraman, R. (2022). A Review on Herbal Remedies for Alzheimer’s Disease. Journal of Natural Remedies, 22(2), 123–135. https://doi.org/10.18311/jnr/2022/29277

Issue

Section

Short Review
Received 2022-01-06
Accepted 2022-03-05
Published 2022-04-19

 

References

Louis ED, Mayer SA. Merritt’s Neurology, 14th Ed. Lippincott Williams & Wilkins; 2021.

Mattson C, Porth GM. Pathophysiology: Concepts of Altered Health States, 8th Ed. Lippincott Williams & Wilkins; 2009.

Available from: www.alz.org/alzheimers-dementia/factsfigures

Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs. 2017; 26:735–9. https://doi.org/10.1080/13543784.2 017.1323868. PMid:28460541. PMCid:PMC5576861

Calabro M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci. 2021; 8:86–132. https://doi.org/10.3934/Neuro science.2021005. PMid:33490374. PMCid:PMC7815481

Patwardhan B, Bodeker G. Ayurvedic genomics: Establishing a genetic basis for mind-body typologies. J Altern Complement Med. 2008; 14: 571–6.https://doi. org/10.1089/acm.2007.0515. PMid:18564959

Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res Ther. 2012; 4:22. https://doi.org/10.1186/ alzrt125. PMid:22747839. PMCid:PMC3506936

Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev. 2014; 8:73–80. https://doi.org/10.4103/0973-7847.134229. PMid: 25125878. PMCid:PMC4127824

Barkat MA, Goyal A, Barkat HA, Salauddin M, Pottoo FH, Anwer ET. Herbal medicine: Clinical perspective and regulatory status. Comb Chem High Throughput Screen. 2020. https://doi.org/10.2174/1386207323999201110192942. PMid:33176638

Howes MJ, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav. 2003; 75:513–27. https://doi.org/10.1016/S0091-3057(03)00128-X

Matsuda H, Murakami T, Kishi A, Yoshikawa M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 2001; 9:1499–507. https://doi.org/10.1016/S0968- 0896(01)00024-4

Kumar S, Harris RJ, Seal CJ, Okello EJ. An aqueous extract of Withania somnifera root inhibits amyloid beta fibril formation in vitro. Phytother Res. 2011. https://doi.org/10.1002/ ptr.3512. PMid:21567509

Jayaprakasam B, Padmanabhan K, Nair MG. Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res. 2010; 24:859–63. https://doi.org/10.1002/ptr.3033. PMid:19957250

Parihar MS, Hemnani T. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci. 2003; 28:121–8.https://doi. org/10.1007/BF02970142. PMid:12682435

Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport. 2000; 11:1981–5. https://doi.org/10.1097/00001756-200006260-00035. PMid:10884056

Kuboyama T, Tohda C, Zhao J, Nakamura N, Hattori M, Komatsu K. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport. 2002; 13:1715–20. https://doi.org/10.1097/00001756- 200210070-00005. PMid:12395110

Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int. 1997; 30:181–90. https://doi.org/10.1016/S0197-0186(96)00025-3

Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals. 2005; 14:34–45. https://doi. org/10.1159/000085384. PMid:15956813

Halim MA, Rosli IM, Jaafar SSM, Ooi H-M, Leong P-W, Shamsuddin S, Najimudin N. Withania somnifera showed neuroprotective effect and increase longevity in Drosophila Alzheimer’s disease model. BioRxiv. 2020. https://doi. org/10.1101/2020.04.27.063107

Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl. 2017; 14:599–612. https://doi.org/10.1080/1939 0211.2017.1284970. PMid:28471731

Chatterji N, Rastogi RP, Dhar ML: Chemical examination of Bacopa monniera Wettst: Parti-isolation of chemical constituents. India J Chem. 1965; 3:24.

Kumar V. Potential medicinal plants for CNS disorders: An overview. Phytother Res. 2006; 20:1023–35. https://doi. org/10.1002/ptr.1970. PMid:16909441

Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann Neurosci. 2017; 24:111–22. https://doi.org/10.1159/000475900. PMid:28588366. PMCid:PMC5448442

Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine. 2005; 12:305–17. https:// doi.org/10.1016/j.phymed.2003.12.008. PMid:15898709

Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol. 2008; 120:112–17. https://doi. org/10.1016/j.jep.2008.07.039. PMid:18755259

Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res. 2007; 21:965–9. https://doi.org/10.1002/ ptr.2195. PMid:17604373

Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol. 2010; 127:26–31. https://doi. org/10.1016/j.jep.2009.09.056. PMid:19808086

Farooqui AA, Farooqui T, Madan A, Ong JH, Ong WY. Ayurvedic medicine for the treatment of dementia: Mechanistic aspects. Evid Based Complement Alternat Med. 2018; 2018:2481076.https://doi.org/10.1155/2018/2481076. PMid:29861767. PMCid:PMC5976976

Shinomol GK, Muralidhara, Bharath MM. Exploring the role of “brahmi” (Bocopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov. 2011; 5:33–49. https://doi. org/10.2174/187221411794351833. PMid:22074576

Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 2002; 27:279– 81.https://doi.org/10.1016/S0893-133X(01)00419-5

Pase MP, Kean J, Sarris J, Neale C, Scholey AB, Stough C. The cognitive-enhancing effects of Bacopa monnieri: A systematic review of randomized, controlled human clinical trials. J Altern Complement Med. 2012; 18:647–52. https:// doi.org/10.1089/acm.2011.0367. PMid:22747190

Singh RH, Narsimhamurthy K, Singh G. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology. 2008; 9:369–74. https://doi.org/10.1007/ s10522-008-9185-z. PMid:18931935

Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, et al. Sideritis spp. extracts enhance memory and learning in alzheimer’s beta-amyloidosis mouse models and aged C57Bl/6 mice. J Alzheimers Dis. 2016; 53:967–80. https://doi.org/10.3233/JAD-160301. PMid:27258424. PMCid:PMC4981905

Dimpfel W, Schombert L, Biller A. Psychophysiological effects of sideritis and bacopa extract and three combinations thereof-A quantitative EEG study in subjects suffering from Mild Cognitive Impairment (MCI). Adv Alzheimer’s Dis. 2016; 5:1–22. https://doi.org/10.4236/aad.2016.51001

Zanotta D, Puricelli S, Bonoldi G. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: A noncomparative, exploratory clinical study. Neuropsychiatr Dis Treat. 2014; 10:225–30. https://doi.org/10.2147/NDT.S51092. PMid:24523587. PMCid:PMC3921088

Raghav S, Singh H, Dalal PK, Srivastava JS, Asthana OP. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry. 2006; 48:238–42. https://doi.org/10.4103/0019- 5545.31555. PMid:20703343. PMCid:PMC2915594

Batiha GE-S, Beshbishy AM, Wasef L, Elewa YHA, El-Hack MEA, Taha AE, Al-Sagheer AA, Devkota HP, Tufarelli V. Uncaria tomentosa (Willd. ex Schult.) DC: A review on chemical constituents and biological activities. Appl Sci. 2020; 10:2668. https://doi.org/10.3390/app10082668

Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochmistry. 2005; 66:5–29. https:// doi.org/10.1002/chin.200517286

Snow AD, Castillo GM, Nguyen BP, Choi PY, Cummings JA, Cam J, Hu Q, Lake T, Pan W, Kastin AJ, et al. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep. 2019; 9:561. https://doi.org/10.1038/s41598-019-38645-0. PMid:30728442. PMCid:PMC6365538

Kirschner DA, Gross AAR, Hidalgo MM, Inouye H, Gleason KA, Abdelsayed GA, Castillo GM, Snow AD, Pozo-Ramajo A, Petty SA, et al. Fiber diffraction as a screen for amyloid inhibitors. Curr Alzheimer Res. 2008; 5:288–307. https:// doi.org/10.2174/156720508784533295. PMid:18537544

Yuan SQ, Zhao YM. A novel phlegmariurine type alkaloid from Huperzia serrata (Thunb.) Trev Yao Xue Xue Bao. 2003; 38(8):596–8.

Rafii MS, Walsh S, Little JT, Behan K, Reynolds B and Ward C. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Alzheimer’s Disease Cooperative Study. Neurology. 2011; 76(16):1389–94. https://doi. org/10.1212/WNL.0b013e318216eb7b. PMid:21502597. PMCid:PMC3269774

Song WB, Hao W, Zhao-hui W, Yan-yan S, Lu Z, Hong- Zhuan C. Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: An updated meta-analysis. J Neural Transm. 2009; 116(4):457. https://doi.org/10.1007/s00702-009-0189-x. PMid:19221692

Teris A, Beek V: Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatography A. 2002; 967(1):21–55. https://doi.org/10.1016/S0021-9673(02)00172-3

Le Bars PL, Katz MM, Berman N. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA. 1997; 278:1327–32. https://doi. org/10.1001/jama.1997.03550160047037

Bastianetto S, Zheng WH, Quirion R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C. J Neurochem. 2000; 74:2268–277. https://doi.org/10.1046/j.1471- 4159.2000.0742268.x. PMid:10820186

Schindowski K, Leutner S, Kressmann S, Eckert A, Muller WE. Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761). J Neural Transm. 2001; 108:969–78. https://doi.org/10.1007/ s007020170016. PMid:11716149

Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from betaamyloidinduced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res. 2001; 889:181–90. https://doi.org/10.1016/S0006- 8993(00)03131-0

Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci. 2015; 1:14. https://doi.org/10.1186/s40780-015-0014-7. PMid:26819725. PMCid:PMC4729005

Janssen IM, Sturtz S, Skipka G, Zentner A, Garrido MV, Busse R. Ginkgo biloba in Alzheimer’s disease: A systematic review. Wien Med Wochenschr. 2010; 160:539–46. https:// doi.org/10.1007/s10354-010-0844-8. PMid:21170694

Yuan Q, Wang CW, Shi J, Lin ZX. Effects of Ginkgo biloba on dementia: An overview of systematic reviews. J Ethnopharmacol. 2017; 195:1–9. https://doi.org/10.1016/j. jep.2016.12.005. PMid:27940086

Maurer K, Ihl R, Dierks T, Fr¨olichL. Clinical efficacy of Ginkgo biloba special extract EGb 761 in dementia of the Alzheimer type. J Psychiatr Res. 1997; 31(6):645–55. https:// doi.org/10.1016/S0022-3956(97)00022-8

Luo Y. Ginkgo biloba neuroprotection: therapeutic implications in Alzheimer’s disease. J Alzheimer’s Dis. 2001; 3(4):401–7. https://doi.org/10.3233/JAD-2001-3407. PMid:12214044

Shinji S, Yasukazu T, Hatsue W, Kazuo K, Machiko I, Naoki M. Analysis of brain cell activation by nanosized particles of Ginkgo biloba extract. Plant Physiol Biochem. 2011; 3(3):28–33.

Tawab MA, Bahr U, Karas M, Wurglics M, Zsilavecz SM. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos. 2003; 31(8):1065–71. https:// doi.org/10.1124/dmd.31.8.1065. PMid:12867496

Imbimbo BP. Therapeutic potential of gamma-secretase inhibitors and modulators. Curr Top Med Chem. 2008; 8:54–61. https://doi.org/10.2174/156802608783334015. PMid:18220933

Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res. 2012; 36(4):342–53. https:// doi.org/10.5142/jgr.2012.36.4.342. PMid:23717136. PMCid:PMC3659610

Cervenka F, Jahodar L. Plant metabolites as nootropics and cognitive. Ceska Slov Farm. 2006; 55:219–29.

Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA. Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model. Phytother Res. 2009; 23:14–19. https://doi. org/10.1002/ptr.2405. PMid:19048607

Da Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA Barreiro EJ, Viegas C. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2011; 10:251–70. https://doi.org/10.2174/187152711794480429. PMid:20874701

Kumar MHV, Gupta YK. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol. 2003; 30:336–42. https://doi. org/10.1046/j.1440-1681.2003.03842.x. PMid:12859423

Xu Y, Cao Z, Khan I, Luo Y. Gotu Kola (Centella asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide. J Alzheimers Dis. 2008; 13:341–9. https://doi.org/10.3233/JAD-2008-13311. PMid:18431001

Soumyanath A, Zhong Y-P, Yu X, Bourdette D, Koop DR, Gold SA, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmacol. 2005; 57:1221–9.https://doi.org/10.1211/ jpp.57.9.0018. PMid:16105244

Wattanathorn J, Mator L, Muchimapura S, Tongun T, Pasuriwong O, Piyawatkul N, et al. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol. 2008; 116:325–32. https://doi. org/10.1016/j.jep.2007.11.038. PMid:18191355

Urizar NL, Moore DD. GUGULIPID: A natural cholesterol- lowering agent. Annu Rev Nutr 2003; 23:303–13. https://doi.org/10.1146/annurev.nutr.23.011702.073102. PMid:12626688

Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid beta, and Alzheimer’s. Curr Alzheimer Res. 2010; 7:262–70. https://doi. org/10.2174/156720510791050821 PMid:19715550

Perluigi M, Joshi G, Sultana R, et al. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress. J Neurosci Res. 2006; 84(2):418–26. https://doi.org/10.1002/jnr.20879. PMid:16634068

Scapagnini , Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxidants and Redox Signaling. 2004; 6(5):811–18. https://doi.org/10.1089/ars.2004.6.811. PMid:15345140

Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem. 2005; 92(4):749–58. https://doi. org/10.1111/j.1471-4159.2004.02899.x. PMid:15686476

Ramadan MF, Wahdan KMM, Hefnawy HTM, Kinni SG, Rajanna LN. Lipids of Celastrus paniculatus seed oil. Chem Nat Compd. 2010; 46(4):625. https://doi.org/10.1007/ s10600-010-9693-3

Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2011; 10:251–70. https://doi. org/10.2174/187152711794480429. PMid:20874701

Basta A, Tzakou O, Couladis M: Composition of the leaves essential oil of Melissa officinalis from Greece. Flavour Fragr J. 2005; 20(6):642–44. https://doi.org/10.1002/ffj.1518

Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in european medicinal plants traditionally used to improve failing memory. J Ethnopharmacol. 2000; 69(2):105–14. https://doi. org/10.1016/S0378-8741(99)00113-0

Noguchi-Shinohara M, Ono K, Hamaguchi T, Nagai T, Kobayashi S, Komatsu J, et al. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer’s disease progression. Sci Rep. 2020; 10(1):18627. https://doi.org/10.1038/s41598-020-73729-2. PMid:33122694 PMCid:PMC7596544

Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry. 2003 Jul; 74(7):863–6. https://doi.org/10.1136/jnnp.74.7.863. PMid:12810768. PMCid:PMC1738567

Venturella G, Ferraro V, Cirlincione F, Gargano ML. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int J Mol Sci. 2021; 22:634. https://doi.org/10.3390/ ijms22020634. PMid:33435246. PMCid:PMC7826851

Li I-C, Lee L-Y, Tzeng T-T, Chen W-P, Chen Y-P, et al. Neurohealth properties of Hericium erinaceus mycelia enriched with erinacines. Behav Neurol. 2018; 2018:5802634. https://doi.org/10.31193/ssap.isbn.9787520118873

Khan A, Tania M, Liu R, Rahman MM. Hericium erinaceus: An edible mushroom with medicinal values. J Complement Integr Med. 2013; 10. https://doi.org/10.1515/jcim-2013- 0001. PMid:23735479

Zhang CC, Cao CY, Kubo M, Harada K, Yan XT, Fukuyama Y, Gao JM. Chemical constituents from Hericium erinaceus promote neuronal survival and potentiate neurite outgrowth via the TrkA/Erk1/2 pathway. Int J Mol Sci. 2017; 18:1659. https://doi.org/10.3390/ijms18081659. PMid:28758954. PMCid:PMC5578049

Tsai-Teng T, Chin-Chu C, Li-Ya L, Wan-Ping C, Chung- Kuang L, Chien-Chang S, Chi-Ying HF, Chien-Chih C, Shiao YJ. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice. J Biomed Sci. 2016; 23:49. https://doi.org/10.1186/s12929-016-0266-z. PMid:27350344. PMCid:PMC4924315

Tzeng T-T, Chen C-C, Chen C-C, Tsay H-J, Lee L-Y, Chen W-P, Shen C-C, Shiao Y-J. The cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s disease-related pathologies in APP/PS1 transgenic mice. Int J Mol Sci. 2018; 19:598. https://doi.org/10.3390/ijms19020598. PMid:29463001. PMCid:PMC5855820

Li I-C, Chang H-H, Lin C-H, Chen W-P, Lu T-H, Lee L-Y, et al. Prevention of early Alzheimer’s Disease by erinacine a-enriched Hericium erinaceus mycelia pilot doubleblind placebo-controlled study. Front Aging Neurosci. 2020; 12:155. https://doi.org/10.3389/fnagi.2020.00155. PMid:32581767. PMCid:PMC7283924

Kyriakides ML, Kyriakides DA. Crocus sativus- Biological active Constituents. Stud Nat Prod Chem. 2002; 26:293– 312. https://doi.org/10.1016/S1572-5995(02)80009-6

Adalier N, Parker H. Vitamin E, turmeric and saffron in treatment of Alzheimer’s disease. Antioxidants. 2016; 5:40. https://doi.org/10.3390/antiox5040040. PMid:27792130. PMCid:PMC5187538

Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis A.M. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed. 2015; 5:376–91.

Gohari AR, Saeidnia S, Mahmoodabadi MK. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev. 2013; 7:61–6. https:// doi.org/10.4103/0973-7847.112850. PMid:23922458. PMCid:PMC3731881

Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: A 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther. 2010; 35:581–8. https://doi.org/10.1111/ j.1365-2710.2009.01133.x. PMid:20831681

Farokhnia M, Sabet MS, Iranpour N, Gougol A, Yekehtaz H, Alimardani R, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: A double-blind randomized clinical trial. Hum Psychopharmacol. 2014; 29:351–9. https://doi.org/10.1002/hup.2412. PMid:25163440

Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology. 2010; 207:637–43. https://doi. org/10.1007/s00213-009-1706-1. PMid:19838862

Singh GK, Bhandari A. Text book of Pharmacognosy 1st edn. New Delhi: CBS Publishers; 2000. 91. Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm Biol. 2011; 49:1234–42. https://doi. org/10.3109/13880209.2011.584539. PMid:21846173

Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol. 2009; 124:409–15. https://doi.org/10.1016/j.jep.2009.05.038. PMid:19505562

Nahata A, Patil UK, Dixit VK. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents. Nat Prod Res. 2008; 22:1472–82. https://doi.org/10.1080/14786410802214199. PMid:19023811

Rai KS, Murthy KD, Karanth KS, Nalini K, Rao MS, Srinivasan KK. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia. 2002; 73:685–9. https://doi.org/10.1016/S0367-326X(02)00249-6

Rai KS, Murthy KD, Karanth KS, Rao MS. Clitoria ternatea (Linn) root extract treatment during growth spurt period enhances learning and memory in rats. Indian J Physiol Pharmacol. 2001; 45:305–13.

Taranalli AD, Cheeramkuzhy TC. Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm Biol. 2000; 38:51–6. https://doi. org/10.1076/1388-0209(200001)3811-BFT051

Rai KS, Murthy KD, Rao MS, Karanth KS. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract. Phytother Res. 2005; 19:592–8. https://doi.org/10.1002/ ptr.1657. PMid:16161034

Sharma K, Bhatnagar M, Kulkarni SK. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Wild on learning and memory in young and old mice: A comparative evaluation. Indian J Exp Biol. 2010; 48:479–85.

Henrotin Y, Clutterbuck AL, Allaway D: Biological actions of curcumin on articular chondrocytes. Osteoarthr Cartil. 2010; 18(2):141–9. https://doi.org/10.1016/j. joca.2009.10.002. PMid:19836480

Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol. 2007; 595:1–75. https://doi.org/10.1007/978-0-387-46401-5_1. PMid:17569205

Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008; 326:196–208. https://doi.org/10.1124/jpet.108.137455. PMid:18417733 PMCid:PMC2527621

Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001; 21:8370–7. https://doi.org/10.1523/ JNEUROSCI.21-21-08370.2001. PMid:11606625. PMCid: PMC6762797

Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris- White ME, Frautschy SA. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging. 2005 26(Suppl. 1):133–6. https://doi. org/10.1016/j.neurobiolaging.2005.09.005 PMid:16266772

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005; 280:5892–901. https:// doi.org/10.1074/jbc.M404751200. PMid:15590663

Wang Y, Yin H, Lou J, Han B, Qin X, Meng F, Geng S, Liu Y. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer’s disease. Neural Regen Res. 2011; 6:1845–9.

Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Hirao K, Shirai N, Sogabe T, Tooyama I. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol Aging. 2015; 36:201–210. https://doi.org/10.1016/j.neurobiolaging. 2014.07.041. PMid:25179227

Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, et al. Curcumin improves amyloid beta-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One. 2015; 10:e0131525. https:// doi.org/10.1371/journal.pone.0131525. PMid:26114940 PMCid:PMC4482657

Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H, et al. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012; 33(4):499–504. https://doi.org/10.4103/0974- 8520.110524. PMid:23723666. PMCid:PMC3665200

Most read articles by the same author(s)