

JOURNAL OF NATURAL REMEDIES

Antioxidant potential of aqueous extract of *Cassia fistula* L. leaves

Madhurima, S. H. Ansari, Sayeed Ahmad, Md. Sohail Akhtar, Prawez Alam

Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India

Abstract

The aqueous extract of *Cassia fistula* L. leaves showed an antioxidant activity as evaluated by studying the inhibition of lipid peroxidation, estimation of glutathione, scavenging effects on DPPH and H_2O_2 , metal chelating ability and reducing power assay. Total phenol and flavonoid content of the extracts were also determined.

Key words: C. fistula L., Antioxidant activity, Scavenging activity

1. Introduction

Cassia fistula L. (Leguminosae) is medium size deciduous tree bearing yellow blossoms, cultivated throughout India, West Indies, Ceylon, Egypt, China and many other countries. Besides being ornamental plant, leaves has been used traditionally in India in jaundice, piles, rheumatism, ulcer and externally, in skin eruption, ringworm, eczema, prurigo and pruritis. It also has laxative and antiperiodic property [1, 2]. The leaves contain various phytoconstituents like, anthraquinone glycosides and polyphenolic compounds such as, tannin, flavanol, flavonol glycoside and phenolic acid [1, 3].

2. Materials and methods

2.1. Collection of plant material

The leaves of Cassia fistula were collected in the month of May - June 2006, from Herbal Garden, Jamia Hamdard, New Delhi. Plant sample was identified by Taxonomist, Department of Botany of the University and voucher specimen was deposited in Phytochemistry Research Laboratory.

Animals: Male Wistar rats (100-150 g) were procured from Central Animal House of Hamdard University. The animals were group-housed in PVC cages maintained under standard conditions. The overnight fasted animals were used for the experiment.

Sample preparation: Aqueous extract was obtained by extraction of powdered raw material

^{*} Corresponding author

Email: madhurima_pharma@rediffmail.com

Table 1. Extracts yields, total phenol and flavonoid content

Extract	Nature	Yield, %	Total phenol mg/g	Total flavonoid mg/g
Aqueous	Brown semisolid	12.8	12.99 ± 0.38	5.24 ± 0.36

Values are means \pm SD of triplicate analyses

Table 2. Reducing power, free radical scavenging and metal chelating activity of aqueous extract of *C. fistula* leaves

	Aqueous extract			Standard				
Absorbance*	% inhibition*	IC ₅₀ value**	Absorbance*	% inhibition*	IC ₅₀ value**			
Reducing power (absorbance at 700 nm) Standard as Ascorbic acid, Absorbance of control (0.081 ± 0.001)								
0.212 ± 0.009			0.511 ± 0.011					
0.464 ± 0.004		4.61 ± 0.0008	0.645 ± 0.005		4.05 ± 0.008			
0.877 ± 0.013			0.742 ± 0.012					
1.062 ± 0.069			1.316 ± 0.005					
DPPH-Free radical scavenging activity (absorbance at 517 nm) Standard as Ascorbic acid, Absorbance of contro $(0.515 \pm 0.002)^{a}$								
0.307 ± 0.008	40.38		0.310 ± 0.005	39.80				
0.268 ± 0.005	47.96	0.070 ± 0.785	0.298 ± 0.002	42.13	0.066 ± 0.643			
0.228 ± 0.005	55.72		0.212 ± 0.002	58.83				
0.217 ± 0.012	57.86		0.172 ± 0.007	66.60				
Metal chelating activity (absorbance at 562 nm) Standard as Na ₂ EDTA***, Absorbance of control (0.451 ± 0.005)								
0.322 ± 0.012	28.60		0.114 ± 0.005	74.72				
0.304 ± 0.005	32.59	0.073 ± 0.39	0.085 ± 0.007	81.15	0.042 ± 1.465			
0.219 ± 0.005	51.44		0.042 ± 0.009	90.68				
0.157 ± 0.006	65.18		0.026 ± 0.011	94.23				
)	ower (absorbance at 0.212 \pm 0.009 0.464 \pm 0.004 0.877 \pm 0.013 1.062 \pm 0.069 radical scavenging 002) ^a 0.307 \pm 0.008 0.268 \pm 0.005 0.217 \pm 0.012 ting activity (absort 0.322 \pm 0.012 0.304 \pm 0.005 0.219 \pm 0.005	Absorbance* % inhibition* ower (absorbance at 700 nm) Stan 0.212 ± 0.009 0.464 ± 0.004 0.877 ± 0.013 1.062 ± 0.069 radical scavenging activity (absorbance at 502) ^a 0.307 ± 0.008 40.38 0.268 ± 0.005 47.96 0.217 ± 0.012 57.86 ting activity (absorbance at 562 m 0.304 ± 0.005 32.59 0.219 ± 0.005 51.44	Absorbance* % IC $_{50}$ value** ower (absorbance at 700 nm) Standard as Ascorbic 0.212 ± 0.009 0.464 ± 0.004 0.877 ± 0.013 1.062 ± 0.069 radical scavenging activity (absorbance at 517 nm 102) ^a 0.307 ± 0.008 40.38 0.268 ± 0.005 47.96 0.217 ± 0.012 57.86 ting activity (absorbance at 562 nm) Standard as N 0.322 ± 0.012 28.60 0.304 ± 0.005 32.59 0.219 ± 0.005 51.44	Absorbance* % IC $_{50}$ inhibition* Absorbance* ower (absorbance at 700 nm) Standard as Ascorbic acid, Absorbance of 0.212 ± 0.009 0.511 ± 0.011 0.464 ± 0.004 4.61 ± 0.0008 0.645 ± 0.005 0.877 ± 0.013 0.742 ± 0.012 1.062 ± 0.069 1.316 ± 0.005 radical scavenging activity (absorbance at 517 nm) Standard as Ascorbic $0.202)^a$ 0.310 ± 0.005 0.307 ± 0.008 40.38 0.310 ± 0.005 0.268 ± 0.005 47.96 0.070 ± 0.785 0.298 ± 0.002 0.217 ± 0.012 57.86 0.172 ± 0.007 0.322 ± 0.002 0.114 ± 0.005 0.304 ± 0.005 32.59 0.073 ± 0.39 0.085 ± 0.007 0.219 ± 0.005	Absorbance* % IC % inhibition* value** Absorbance inhibition* ower (absorbance at 700 nm) Standard as Ascorbic acid, Absorbance of control (0.08 0.212 ± 0.009 0.511 ± 0.011 0.464 ± 0.004 4.61 ± 0.0008 0.645 ± 0.005 0.877 ± 0.013 0.742 ± 0.012 1.062 ± 0.069 1.316 ± 0.005 radical scavenging activity (absorbance at 517 nm) Standard as Ascorbic acid, Absorbance acid, Absorbance acid, Absorbance at 517 nm) 0.307 ± 0.008 40.38 0.310 ± 0.005 39.80 0.268 ± 0.005 47.96 0.070 ± 0.785 0.298 ± 0.002 42.13 0.228 ± 0.005 55.72 0.212 ± 0.002 58.83 0.217 ± 0.012 57.86 0.172 ± 0.007 66.60 ting activity (absorbance at 562 nm) Standard as Na_2EDTA***, Absorbance of control 0.322 ± 0.012 28.60 0.114 ± 0.005 74.72 0.304 ± 0.005 32.59 0.073 ± 0.39 0.085 ± 0.007 81.15 0.219 ± 0.005 51.44 0.042 ± 0.009 90.68			

*Values are means \pm SD of triplicate analyses; ** IC₅₀ (mg/ml) \pm SE was calculated by linear regression; ***Na₂EDTA-Ethylenediamine tetraacetic acid disodium salt; a inhibition was calculated using formula $[(A_c - A_s) / A_c] \times 100$ Where: A_c - absorbance of control sample; A_s - absorbance of tested extract solution;

Table 3. Quantities of malonyldialdehyde, reduced glutathione and H_2O_2 scavenging effect of aqueous extract of *C. fistula* leaves

Extracts (mg/ml)	MDA nmol / mg protein	GSH mg/gm tissue	H_2O_2 scavenging effect (%) ^b					
	(Control	(Control	Standard	Aqueous extract				
	4.49 ± 18.09)	$0.21 \pm 0.005)$	(Ascorbic acid)					
	(n = 6)	$50 \min(n = 6)$	(Volume of control 52.8 ml)					
2	3.86 ± 9.429	0.17 ± 0.006	46.3 ± 0.165	14.07 ± 0.063				
4	2.92 ± 10.442	0.15 ± 0.011	55.17 ± 0.060	20.91 ± 0.183				
8	1.41 ± 18.08	0.23 ± 0.0001	73.16 ± 0.140	25.67 ± 0.176				
10	1.18 ± 9.397	0.30 ± 0.015	84.16 ± 0.008	31.67 ± 0.011				
IC_{50} (mg/ml) ± SE	2.16 ± 0.09	15.92 ± 0.002	0.05 ± 0.758	0.14 ± 0.237				

Values are means \pm SD of triplicate analyses; ^bScavenging rate = $(V_0 - V_1)/V_0 \times 100$ %, Where V₀ was volume of Na₂S₂O₃ solution used to titrate the control sample in presence of hydrogen peroxide, V_1 was the volume of Na₃S₂O₃ solution used in presence of extracts.

with eight parts of distilled water (70-80°C) for 3-4 h on orbital shaker.

Evaluation of antioxidant activity: The antioxidant potential of the extract was determined by using free radical scavenging capacity by the 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) [4], reducing power assay [5], metal chelating ability [6] and ability to scavenge hydrogen peroxide [7]. The inhibition of lipid per oxidation was determined using thiobarbituric acid (TBA) method [8], values were given as equivalent amounts of malonyldialdehyde (MDA). Protein concentration was measured by Lowry method using Bovine serum albumin as standard [9]. The amount of glutathione was determined according to Tripathi and Pandey [10]. The total phenol [11] and flavonoid contents were also estimated [12].

2. Result and discussion

The results are presented in Table 1-3. The

aqueous extract of *C. fistula* leaves possess a significant antioxidant activity in all test performed.

Table 1: Extracts yields, total phenol andflavonoid content

Table 2: Reducing power, free radical scavenging and metal chelating activity of aqueous extract of *C. fistula* leaves

Table 3: Quantities of malonyldialdehyde, reduced glutathione and H_2O_2 scavenging effect of aqueous extract of *C. fistula* leaves

The activity is in good correlation with extract concentrations. According to literature survey, leaves are rich in polyphenols and polyphenols are natural antioxidant [13, 14]. Thus, we can assume that antioxidant activity of analyzed *C. fistula* extract is due to presence of polyphenols. Further work is necessary to isolate the active constituents.

References

- 1. Joshi SG. (2000) *Medicinal Plants*, Oxford and IBH publishing Co. Pvt. Ltd: New Delhi; 120-121.
- Prajapati ND, Purohit SS, Sharma AK, Kumar T. (2003) A Handbook of Medicinal Plants, A complete source book, Agrobios: Jodhpur, India; 1119-120.
- 3. Barthakur NN, Arnold NP, Alli I. (1995) *Plant Foods Human Nutr.* 47: 55–62.
- 4. Gyamfi, MA, Yonamine M, Aniya Y. (1999) *Gen. Pharmacol.* 32: 661–667.
- 5. Oyaizu M. (1986) J. Nutr. 44: 307-315.
- 6. Carter P. (1971) Anal. Biochem. 40: 450-458.
- 7. Wang H, Gao XD, Zhou GC, Cai L, Yao WB. (2008) *Food Chem*. 106 (3): 888-895.
- 8. Ohkawa H, Ohishi N, Yagi K. (1979) Anal. Biochem. 95: 351-358.

- 9. Lowry OH, Rosebrough NJ, Farr AL, Randall RJL. (1951) *J. Biol. Chem.* 193: 265-275.
- 10. Tripathi YB, Pandey E. (1999) *Ind. J. Exp. Biol.* 37: 567-571.
- Singleton V, Orthofer R, Lamuela-Ravento's, R. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In L. Packer (Ed.). Oxidants and antioxidants, part A, Methods in enzymology Academic Press: New York; 152–178.
- 12. State Pharmacopoeia of USSR (1989) *Medicina*: Moscow; 324–334 (in Russian).
- 13. Velioglu YS, Mazza G, Gao L, Oomah BD. (1998) J. Agri. Food Chem. 46: 4113-4117.
- Cotelle N, Berneir JL, Catteau JP, Pommery J, Wallet JC, Gaydou EM (1996) *Free Radic*. *Biol. Med.* 20: 35-43.