Microstructure Characteristics and Properties of NiCrMoFeCoAl-30%SiO2 Composite Coating on T22 Boiler Tube Steel

Jump To References Section

Authors

  • School of Mechanical Engineering, REVA University Bengaluru ,IN
  • School of Mechanical Engineering, REVA University Bengaluru ,IN
  • Department of Chemistry, School of Applied Sciences, REVA University Bengaluru ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32754

Keywords:

SEM/EDS Technique, Thermal Spraying.

Abstract

In the present investigation, the NiCrMoFeCoAl-30%SiO2 composite coating was sprayed on T22 bare steel with the HVOF technique. HVOFtechniqueallows the production of dense, excellently structured coatings with smoother surfaces and enhanced mechanical properties of the boiler materials. The produced coatings are characterized for their microstructure, and corrosion resistance by high-temperature corrosion.The specimen microstructure has been characterized by SEM/EDS and XRD methods. The coating thickness, porosity, microhardness, and coating density have been assessed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-15

How to Cite

Patil, V. G., Somasundaram, B., & Kandaiah, S. (2023). Microstructure Characteristics and Properties of NiCrMoFeCoAl-30%SiO<sub>2</sub> Composite Coating on T22 Boiler Tube Steel. Journal of Mines, Metals and Fuels, 70(10A), 61–66. https://doi.org/10.18311/jmmf/2022/32754

 

References

C.K. Lin, C.C. Berndt, Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, 7–11 June, 1993, p. 561.

Premkumar, K. and Balasubramanian, K.R., 2019. Evaluation of cyclic oxidation behaviour and mechanical properties of nanocrystalline composite HVOF coatings on SA 210 grade C material. Engineering Failure Analysis, 97, pp.635-644. DOI: https://doi.org/10.1016/j.engfailanal.2019.01.038

Bala, N., Singh, H. and Prakash, S., 2009. High-temperature oxidation studies of cold-sprayed Ni–20Cr and Ni–50Cr coatings on SAE 213-T22 boiler steel. Applied Surface Science, 255(15), pp.6862-6869. DOI: https://doi.org/10.1016/j.apsusc.2009.03.006

W. Tillmann, E. Vogli, I. Baumann, G. Kopp, C. Weihs, J. Therm. Spray Technol. 19 (1–2) (2010) 392. DOI: https://doi.org/10.1007/s11666-009-9418-y

A. Rico, J. Gómez-García, C.J. Múnez, P. Poza, V. Utrilla, Surf. Coat. Technol. 203 (2009) 2307. DOI: https://doi.org/10.1016/j.surfcoat.2009.02.035

Roy, M., Pauschitz, A., Polak, R. and Franek, F., 2006. Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr3C2–25 (Ni20Cr) coatings with conventional and nano-crystalline grains. Tribology International, 39(1), pp.29-38. DOI: https://doi.org/10.1016/j.triboint.2004.11.009

J. Rapouch, Degradation of Cr3C2-NiCr coating prepared by the HVOF technique, Kovove Mater.57 (2013)82–86. DOI: https://doi.org/10.2478/kom-2013-0009

Senthilkumar, V., Thiyagarajan, B., Duraiselvam, M. and Karthick, K., 2015. Effect of thermal cycle on Ni–Cr based nanostructured thermal spray coating in boiler tubes. Transactions of Nonferrous Metals Society of China, 25(5), pp.1533-1542. DOI: https://doi.org/10.1016/S1003-6326(15)63755-4

S. Al-Mutairi, M. Hashmi, B. Yilbas, and J. Stokes, Microstructural Characterization of HVOF/Plasma Thermal Spray of Micro/Nano WC-12% Co Powders, Surf. Coat. Technol., 2015, 264, p 175-186 DOI: https://doi.org/10.1016/j.surfcoat.2014.12.050

B. Song, Z. Pala, K. Voisey, and T. Hussain, Gas and Liquid- Fuelled HVOF Spraying of Ni50Cr Coating: Microstructure and High Temperature Oxidation, Surf. Coat. Technol., 2017, 318, p 224-232

J. Cabral Miramontes, G.K. Pedraza Basulto, C. GaonaTiburcio, P.D.C. Zambrano Robledo, C.A. Poblano Salas, and F. AlmerayaCalder´n, Coatings Characterization of Ni-Based Alloy Applied by HVOF, Aircr. Eng. Aerosp. Technol., 2018, 90(2), p 336-343 DOI: https://doi.org/10.1108/AEAT-09-2016-0146

S. Saladi, P. Ramana, and P.B. Tailor, Evaluation of Microstructural Features of HVOF Sprayed Ni-20Al Coatings, Trans. Indian Inst. Met., 2018, 71(10), p 2387-2394 DOI: https://doi.org/10.1007/s12666-018-1369-x

S. Tailor, A. Modi, and S. Modi, Thermally Sprayed Thin Copper Coatings by W-HVOF, J. Therm. Spray Technol., 2019, 28(1-2), p 273-282 DOI: https://doi.org/10.1007/s11666-018-0770-7

Song, B., Pala, Z., Voisey, K.T. and Hussain, T., 2017. Gas and liquid-fuelled HVOF spraying of Ni50Cr coating: Microstructure and high temperature oxidation. Surface and Coatings Technology, 318, pp.224-232. DOI: https://doi.org/10.1016/j.surfcoat.2016.07.046

Yin B, Liu G, Zhou H, Chen J and Yan F 2010 Sliding wear behaviour of HVOF-sprayed Cr3C2–NiCr/CeO2 composite coatings at elevated temperature up to 800°C Tribol. Lett., 37 463-475. DOI: https://doi.org/10.1007/s11249-009-9540-5

Liam Reddy, Philip Shipway, Colin Davis and Tanyir Hussain 2017 HVOF and Laser-Cladded Fe-Cr-B Coating in Simulated Biomass Combustion: Microstructure and Fireside Corrosion Oxid. Met. 87 825-835. DOI: https://doi.org/10.1007/s11085-017-9774-9

Vasudev, H., Thakur, L., Bansal, A., Singh, H. and Zafar, S., 2019. High temperature oxidation and erosion behaviour of HVOF sprayed bi-layer Alloy-718/NiCrAlY coating. Surface and Coatings Technology, 362, pp.366-380. DOI: https://doi.org/10.1016/j.surfcoat.2019.02.012

C.-J. Li, Y.-Y. Wang, G.-J. Yang, A. Ohmori, K.A. Khor, Mater. Sci. Technol. 20 (2004) 1087. DOI: https://doi.org/10.1179/026708304225019722

Zhang, Z., Lai, D.M.Y., Lim, S.H., Chai, J., Wang, S., Jin, H. and Pan, J., 2018. Isothermal oxidation of the Ti2AlC MAX phase coatings deposited by kerosene-fuelled HVOF spray. Corrosion Science, 138, pp.266-274. DOI: https://doi.org/10.1016/j.corsci.2018.04.022