Characterization of Joints Produced by Diffusion Bonding

Jump To References Section

Authors

  • Department of Mechanical Engineering, Sambhram Institute of Technology, Bengaluru - 560097, Karnataka ,IN
  • Department of Mechanical Engineering, Sambhram Institute of Technology, Bengaluru - 560097, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/30330

Keywords:

Diffusion Bonding, Interlayer, Micro-hardness

Abstract

The present study reports on the preparation of diffusion joint of Al 2024 sheets with and without hematite interlayer. Parameters like holding time, temperature and pressure were considered for producing the joint. Samples were prepared at a temperature of 400 °C while varying load (90 and 110 kN). The time duration of applying load was selected as 25 and 35 min. Microstructural characterization using scanning electron microscopy was carried out for analyzing microstructure of the joint. EDS spectrum was used to analyze the elemental composition of the joint. Hardness tests were employed to find the micro-hardness of the prepared joint using Vickers hardness tester.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-07-22

How to Cite

Aravinda, T., & Niranjan, H. B. (2022). Characterization of Joints Produced by Diffusion Bonding. Journal of Mines, Metals and Fuels, 70(5), 258–262. https://doi.org/10.18311/jmmf/2022/30330

Issue

Section

Articles

 

References

Boppana, S. B., Dayanand, S., Kumar, M. A., Kumar, V., & Aravinda, T. (2020). Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites. Journal of Materials Research and Technology, 9(4): 7354-7362. DOI: https://doi.org/10.1016/j.jmrt.2020.05.013

Boppana, S. B., Dayanand, S., Murthy, B. V., Nagaral, M., Telagu, A., Kumar, V., & Auradi, V. (2021). Development and Mechanical Characterisation of Al6061-Al2O3- Graphene Hybrid Metal Matrix Composites. Journal of Composites Science, 5(6): 155. DOI: https://doi.org/10.3390/jcs5060155

Aravinda, T., Niranjan, H. B., Babu, B. S., & Ravi, M. U. (2021). Solid State Diffusion Bonding Process-A Review. In IOP Conference Series: Materials Science and Engineering, 1013(1). DOI: https://doi.org/10.1088/1757-899X/1013/1/012011

Dayanand, S., Boppana, S.B., Hemanth, J. & Telagu, A. (2019). Microstructure and corrosion characteristics of in situ aluminum diboride metal matrix composites. Journal of Bio-and Tribo-Corrosion, 5(3): 1-10. DOI: https://doi.org/10.1007/s40735-019-0250-8

Bharath, V., Auradi, V., Nagaral, M. & Boppana, S.B. (2020). Experimental investigations on mechanical and wear behaviour of 2014Al-Al2O3 Composites. Journal of Bio-and Tribo-Corrosion, 6(2): 1-10. DOI: https://doi.org/10.1007/s40735-020-00341-2

Nagaral, M., Deshapande, R.G., Auradi, V., Boppana, S.B., Dayanand, S. & Anilkumar, M.R. (2021). Mechanical and wear characterization of ceramic boron carbide-reinforced Al2024 alloy metal composites. Journal of Bio-and Tribo- Corrosion, 7(1): 1-12. DOI: https://doi.org/10.1007/s40735-020-00454-8

Kumar, V., Kempaiah, U. N. & Bopanna, S. B. (2021). Nanoindentation studies on multiwalled carbon nanotubes/graphene reinforced aluminium alloy 6061 nanocomposites. Materials Today: Proceedings, 45: 202-206. DOI: https://doi.org/10.1016/j.matpr.2020.10.418

Derby, B. & Wallach, E. R. (1982). Theoretical model for diffusion bonding. Metal Science, 16(1): 49-56. DOI: https://doi.org/10.1179/030634582790427028

Esposito, L., Bellosi, A., Guicciardi, S. & De Portu, G. (1998). Solid state bonding of Al2O3 with Cu, Ni and Fe: characteristics and properties. Journal of materials science, 33(7): 1827-1836. DOI: https://doi.org/10.1023/A:1004397019927

Elrefaey, A. & Tillmann, W. (2009). Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. Journal of materials processing technology, 209(5): 2746-2752. DOI: https://doi.org/10.1016/j.jmatprotec.2008.06.014

Yan, C., Lifeng, W. & Jianyue, R. (2008). Multi-functional SiC/Al composites for aerospace applications. Chinese Journal of Aeronautics, 21(6): 578-584. DOI: https://doi.org/10.1016/S1000-9361(08)60177-6

Chellman, D. J. & Langenbeck, S. L. (1992). Aerospace applications of advanced aluminum alloys. In Key Engineering Materials Trans Tech Publications Ltd. 77: 49-60. DOI: https://doi.org/10.4028/www.scientific.net/KEM.77-78.49

Lee, C. S., Li, H. & Chandel, R. S. (1999). Vacuum-free diffusion bonding of aluminium metal matrix composite. Journal of Materials Processing Technology, 89: 326-330. DOI: https://doi.org/10.1016/S0924-0136(99)00144-2

Kazakov, N. F. (Ed.). (2013). Diffusion bonding of materials. Elsevier.

Lee, H. S. (2012). Diffusion bonding of metal alloys in aerospace and other applications. In Welding and Joining of Aerospace Materials Woodhead Publishing. p. 320-344. DOI: https://doi.org/10.1533/9780857095169.2.320

Kenevisi, M. S., Khoie, S. M. & Alaei, M. (2013). Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint. Mechanics of materials, 64: 69-75. DOI: https://doi.org/10.1016/j.mechmat.2013.04.011

Urena, A., Gómez de Salazar, J. M., Escalera, M. D. & Hanson, W. B. (2000). Diffusion bonding of alumina reinforced 6061 alloy metal matrix composite using Al-Li interlayer. Materials science and technology, 16(1): 103-109. DOI: https://doi.org/10.1179/026708300773002726

Li, Y., Liu, P., Wang, J. & Ma, H. (2007). XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials. Vacuum, 82(1): 15-19. DOI: https://doi.org/10.1016/j.vacuum.2007.01.073

Zhang, X. P., Ye, L., Mai, Y. W., Quan, G. F. & Wei, W. (1999). Investigation on diffusion bonding characteristics of SiC particulate reinforced aluminium metal matrix composites (Al/SiCp-MMC). Composites Part A: Applied Science and Manufacturing, 30(12): 1415-1421. DOI: https://doi.org/10.1016/S1359-835X(99)00040-8

Peng, L., Yajiang, L., Haoran, G. & Juan, W. (2005). A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding. Materials Letters, 59(16): 2001-2005. DOI: https://doi.org/10.1016/j.matlet.2005.02.038

Jiangwei, R., Yajiang, L. & Tao, F. (2002). Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Materials Letters, 56(5): 647-652. DOI: https://doi.org/10.1016/S0167-577X(02)00570-0

Torun, O., Karabulut, A., Baksan, B. E. D. R. ?. & Çelikyürek, I. (2008). Diffusion bonding of AZ91 using a silver interlayer. Materials & Design, 29(10): 2043-2046. DOI: https://doi.org/10.1016/j.matdes.2008.04.003

Akca, E. & Gursel, A. (2017). Influences of argon gas shielding on diffusion bonding of Ti-6Al-4V alloy to aluminum. Revista de Metalurgia, 53(1): 10-3989.

Kurgan, N. (2014). Investigation of the effect of diffusion bonding parameters on microstructure and mechanical properties of 7075 aluminium alloy. The International Journal of Advanced Manufacturing Technology, 71(9-12): 2115-2124. DOI: https://doi.org/10.1007/s00170-014-5650-9

Yan, J. C., Xu, H. B., Xu, Z. W., Ma, L. & Yang, S. Q. (2004). Modelling behaviour of oxide film during vibration diffusion bonding of SiCp/A356 composite in air. Materials science and technology, 20(11): 1489-1492. DOI: https://doi.org/10.1179/026708304X3926

Dunford, D. V. & Wisbey, A. (1993). Diffusion bonding of advanced aerospace metallics. MRS Online Proceedings Library (OPL), 314. DOI: https://doi.org/10.1557/PROC-314-39

Han, W., Zhang, K. & Wang, G. (2007). Superplastic forming and diffusion bonding for honeycomb structure of Ti-6Al-4V alloy. Journal of Materials Processing Technology, 183(2-3): 450-454. DOI: https://doi.org/10.1016/j.jmatprotec.2006.10.041