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A method based on principal component analysis (PCA) and
Fisher discrimination analysis is proposed targeting water
inrush from mine floor. Based on the analysis of a large
number of measured data from past projects, 13 factors
affecting and controlling water inrush from floor are
selected as the discrimination indexes. Firstly, the dimension
of multi-index floor water inrush data is reduced by
principal component analysis, and 4 principal component
factors are extracted. Then the PCA-Fisher discrimination
model of mine floor water inrush risk is established based
on Fisher discrimination analysis theory, and its
discrimination effect is verified by recurrent discrimination
analysis and an example of its application is presented. The
application results show that the results of the
discrimination model are consistent with the actual
situation, with an accuracy of 100%, which can provide a
more effective method for discriminating the water inrush
risk from mine floor.

Keywords: Floor water inrush, risk discrimination,
principal component analysis, Fisher discrimination
analysis.

1. Introduction

Since 2000, a total of 1,162 coal mine accidents have
occurred in China, resulting in 4,676 deaths [1, 2]. With
the growing depth and breadth of coal mining, the

dangers of water inrush from the mine floor have become
increasingly serious, which has severely restricted the
construction and production of high-yield and high-
efficiency mines. According to relevant statistics [3, 4], among
more than 600 key coal mines in China, 285 of them have the
danger of water inrush, accounting for 47.5%, and the water-
threatened reserves amount to 25 billion tonnes. Thus it is of
great practical significance to correctly discriminate the
danger of water inrush from the mine floor for effectively
reducing the coal mine accidents and ensuring the safe
production of the coal mine.

To carry out research on prevention and control of water
inrush from mine floor and to evaluate its risk can provide

basis and guidance for the measures for prevention and
control of water inrush from mine floor. At present, many
scholars have studied the risk of water inrush from mine floor
in different fields and proposed and established different risk
assessment and evaluation models of floor water inrush. For
example, Yang Zhilei et al. [5], optimized BP neural network
using genetic algorithm to establish a nonlinear prediction
model of floor water inrush of GA-BP neural network. The
application showed that the model was fast and accurate. Cao
Qingkui et al [6] combined the membership degree of fuzzy
theory with support vector machine to establish a fuzzy-
support vector machine model for evaluating the water inrush
risk. The application showed that the model could solve such
problems as small sample and nonlinearity. Based on the
theory of unascertained mathematics, Ye Shixiong et al. [7]
constructed the evaluation model of unascertained measure
of water inrush from floor. The application showed that the
result of the evaluation model was consistent with the actual
situation of the mine. Based on the catastrophe theory, Xu
Debao [8] established the evaluation model of water inrush
from floor and evaluated the risk of water inrush in 9 sections
of Tengbei coal mine. The application proved that the model
was simple and easy to operate. Li Bo [9] established a risk
assessment model of mine floor water inrush based on fuzzy
evaluation and comprehensive weighting and evaluated the
danger of floor water inrush from 6102N working face.
Considering that the mine floor water inrush is a nonlinear
dynamic phenomenon under the comprehensive effect of
various factors, and there is a complicated relationship among
the factors, there are still many shortcomings in the above
methods, although they have been widely used in prediction
of mine floor water inrush. For example, there is a high
coupling between influencing factors of water inrush from the
mine floor. If these factors are not analyzed, the accuracy of
water inrush prediction will be affected. Or the complex
methods, the large data computation, the strong subjectivity
and other shortcomings are not conducive to the
establishment and understanding of the model. Therefore, it
is proposed to use PCA to transform multi-index variables
associated with each other into new sample indexes
independent of each other through linear combination, to
reduce the information coincidence among the influencing
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factors of floor water inrush and reduce the dimension of the
model ρ as to improve the learning efficiency and accuracy
of the model. Based on Fisher discrimination analysis theory,
the main components of water inrush from mine floor are
analyzed comprehensively. Finally, based on the advantages
of Fisher discrimination analysis, a model of mine floor water
inrush risk assessment based on PCA-Fisher discrimination
is established, and the model is applied as an example.

2. Principal component analysis (PCA)
PCA is a method of data compression and feature information
extraction, which can transform the problem of high-
dimensional space into low-dimensional space for processing,
effectively eliminate the correlation between high-dimensional
data sets and reduce the dimension of data. However, the
simplified data structure can provide most of the information
of original data.

Model of the principal component analysis:
A linear combination Y = AX shown in formula (1) is

constructed, and ρ new variables are obtained by linear
combination of ρ variables in the data matrix X.
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Where, there is a linear independence between ai1+ai2+... +aip
= 1 and YiN Yj (i  Hj, i, j, = 1, 2,..., p). The variance of Y1 is
greater than that of Y2, which is greater than that of Y3, and
so on.

PCA solution steps are:
1. First, normalize the original variable data, and then

calculate the covariance matrix of each variable, Σ = (Sij)
p×p.

2.  Calculate the eigenvalue λi of the covariance matrix Σ in
step 1 and the corresponding orthogonalization unit
eigenvector αi. The first m larger eigenvalue of the
covariance matrix Σ is λ1 > λ2 > ... > λm > 0 in order from
large to small, and the orthogonal unit eigenvector σi
corresponding to λi is the coefficient of the original
variable of the principal component Fi, and αi = λi / Σλi (i
= 1, 2,..., p).

3. Select the number of principal components. Usually, when
the cumulative variance contribution ratio Σλi /Σλj (i = 1,
2,..., m), (j = 1, 2,..., p) reaches 80% or more, the first m
principal components of the variable data are taken as the
discrimination indexes. At this point, the sample
information of m principal components contains most
information of the original sample as required.

3. Fisher discrimination analysis theory
The main mathematical model and idea of Fisher

discrimination analysis is to reduce the data dimension of a

multi-dimensional problem through projection, so that the
problem is simplified, and the discrimination function is
determined according to the principle that the distance
between categories is the maximum and the distance within
categories is the minimum. It is of great practical significance.

Suppose there are two populations, G1 and G2, n1 is
extracted from the first population, n2 from the second, and p
indices of each sample are observed. Establish a
discrimination function y = c1x1 + c2 x2 +...+ cpxp, and
calculate the critical value y0, then classify the new samples
according to the criterion. Test the discrimination effect.

H0 : Exa
(1) = S1= Exa

(2) =μ2 Η1 : μ1 ≠ μ2

Test statistics:
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 Given the test level α, check the distribution table F to
determine the critical value Fα, if F < Fα, then H0 will be
denied, and the discrimination is valid, otherwise, invalid.

4. PCA-Fisher discrimination model and its application
Mine floor water inrush is a complex hydrogeological problem
which is comprehensively controlled by many factors, such
as geological structure, hydrogeology, floor water insulation
layer and mining condition, thus it has nonlinear dynamic
characteristics. The selection of evaluation indexes should
not only consider the operability and representativeness of
the indexes, but also consider their accuracy. Too many or
too few evaluation indexes will result in a rebate in working
conditions and credibility of the evaluation method, and also
limit its popularization and application. Taking the evaluation
index system of water inrush from floor in the literature [10]
as reference, the following 13 factors are selected as
evaluation indexes of water inrush from floor, fault density
(V1), fault water conductivity (V2), fracture development
degree (V3), confined water pressure (V4), aquifer water-
richness (V5), karst development degree (V6), strong water
source supply (V7), aquifuge thickness (V8), aquifuge
strength (V9), aquifuge integrity (V10), mining thickness (V11),
mining depth (V12) and slant length of working face (V13).
With references to Regulations on Prevention and Control of
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Coal Mine Water and practical experience, the state of water
inrush from mine floor is divided into non-water inrush and
water inrush. The former refers to a safe state, in which case
the risk of water inrush from the floor of the mine is very low
or there is little water inrush on the floor, which basically does
not affect the safety production of coal mine. The latter refers
to a dangerous state, in which case water inrush from mine
floor has serious influence on mining face, thus can pose a
great threat to the safety production of coal mine. The
qualitative and quantitative methods of evaluation indexes are
the same as those of the literature [10] and based on the case
data collected in Table 1 of the literature [10], the division of
training samples and test samples is the same as that of the
literature [10].
4.1 PROCESSING OF DATA BY PCA

The original data are imported into the SPSS software for
standardization, and the correlation coefficient matrix between
the influencing factors of each water inrush is obtained, as
shown in Table 1. Table 1 shows that there is a clear
correlation between the various factors. The correlation
coefficient between fault density and fault water conductivity
reaches 96.2%, and the correlation coefficient between
confined water pressure and mining thickness reaches 95%.
It shows that there is information overlapping among the 13
evaluation indexes. If the above evaluation indexes are
directly used as the basis for the risk assessment of water
inrush from the floor, the information will be redundant and
the calculation amount will increase. What is more, the
accuracy of mine floor water inrush risk evaluation model may
be affected, which may even results in misjudgment.
Therefore, it is feasible to use PCA for data dimensionality
reduction to extract principal components.

The eigenvalues, eigenvalue contribution rate and
cumulative contribution rate of the correlation coefficient
matrix are calculated. According to the information distribution

rules of each principal component in the PCA lithotripsy in
Fig.1, if the principal component whose characteristic root is
greater than 1 is selected, the cumulative variance
contribution rate reaches 87.738%. In order to reduce the
information loss, the first 4 principal components can be
extracted to effectively summarize the original sample
information.

According to the PCA principal component score
coefficient matrix, the expressions of the principal
components can be obtained as follows:
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According to the above principal component expression,
the principal component analysis calculation is performed on
the normalized raw data, and scores of 4 principal components
(including the corresponding water inrush categories) of 10
samples are obtained as shown in Table 2.

TABLE 1 PEARSON CORRELATION COEFFICIENT MATRIX BETWEEN INDICATORS

Indicator V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

V1 1.000

V2 0.962 1.000

V3 0.527 0.717 1.000

V4 -0.572 -0.567 -0.347 1.000

V5 -0.678 -0.700 -0.532 0.171 1.000

V6 0.087 0.156 0.266 -0.636 -0.255 1.000

V7 0.353 0.406 0.340 -0.699 -0.512 0.913 1.000

V8 -0.121 0.012 0.315 0.332 -0.282 -0.237 -0.033 1.000

V9 -0.478 -0.351 0.085 0.582 0.188 -0.393 -0.354 0.808 1.000

V10 0.183 0.370 0.764 -0.264 0.079 0.141 -0.008 -0.069 0.033 1.000

V11 -0.252 -0.187 0.128 0.352 0.200 -0.151 -0.315 -0.012 0.253 0.348 1.000

V12 -0.562 -0.506 -0.167 0.950 0.244 -0.591 -0.715 0.278 0.598 0.020 0.559 1.000

V13 -0.597 -0.478 -0.147 0.762 0.075 -0.164 -0.205 0.468 0.659 -0.154 0.187 0.743 1.000
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4.2 ESTABLISHMENT OF PCA-FISHER DISCRIMINATION MODEL

Taking F1, F2, F3 and F4 as four discrimination indexes of
Fisher discrimination analysis, based on the basic idea of
Fisher discrimination analysis, the PCA-Fisher discrimination
model of mine floor water inrush risk is established by using
the first 7 groups of training samples, as follows.

1 2 3 40.292 0.405 0.1530.936Z F F F F= × − × − × − × ... (10)

The center values of the PCA-Fisher discrimination model
in two categories can be calculated by Formula 10. As shown
in Table 3, it can be determined which category the sample
belongs to by comparing the distances between the function
values of the pending sample and the center values of the
two categories.

TABLE 3 CENTER VALUES OF THE CATEGORIES

Categories Center values
0 0.529
1 – 0.706

Combined with Table 3, the false judgment rate of the 7
groups of water inrush samples is calculated by using the
recursive estimation method according to Formula 10. The
estimation results are shown in the right-most side of Table
2. It can be seen that the estimation of all the original samples
are correct, with an accuracy of 100%, which indicates that
the Fisher discrimination analysis model is stable and reliable
and can be used to distinguish the mine floor water inrush
risk.

Hence samples number 8, 9, and 10 are brought into that
formula for testing their discrimination application effect. The
function value of sample 8 obtained is 0.351, that of sample 9
is –0.251, and that of sample is –0.172. In combination with
the category center values in Table 3, it can be determined
that their categories are 0, 1, and 1 respectively. The results
are consistent with that of literature [10], proving that the
PCA-Fisher based method is effective and reliable to
discriminate the mine floor water inrush risk. At the same time,
it should be noticed that the data processed by PCA not only
reduces the dimension of the multivariable data system, but
also simplifies the statistics of the variable system and plays
the role of dimension reduction and noise elimination, which
lays a foundation for accurately discriminating the danger of
water inrush from mine floor.

5. Conclusions
The PCA method is used to reduce the dimension of mine
floor water inrush data with 13 indexes. The principal
component is selected on the premise that the characteristic
root is higher than 1. The cumulative variance contribution
rate of the extracted 4 principal components reaches 87.738%,
and the principal component score is calculated. This
provides a basis for accurate discrimination in the next step
and reduces the complexity of the discrimination. It should
be seen that PCA can make the analysis simple, intuitive and
effective.

Based on Fisher discrimination analysis theory, a

TABLE 2. PRINCIPAL COMPONENT SCORES AND WATER INRUSH CATEGORIES

Principal component scores Discrimination results

Number Actual PCA-Fisher
F1 F2 F3 F4 results discrimination

1 -0.378 0.902 0.078 0.42 0 0
2 -0.093 0.717 0.342 1.294 1 1
3 0.675 0.648 0.313 0.586 0 0
4 -0.209 0.261 0.416 -0.052 1 1
5 0.131 0.044 -0.534 1.053 0 0
6 -0.182 1.162 -0.622 0.583 1 1
7 0.594 0.534 -0.014 0.426 0 0
8 * 0.613 0.552 -0.004 0.41 0 0
9 * -0.114 -0.014 -0.017 1.013 1 1

10* -0.115 0.466 -0.287 0.289 1 1

Fig.1 PCA lithotripsy
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discrimination model of mine floor water inrush risk based on
PCA-Fisher is established. Its estimation accuracy of the
effectiveness is 100%, and its accuracy of the discrimination
application is 100%. Therefore, the discrimination analysis
method is feasible, which can be used as a method to evaluate
the risk of water inrush from mine floor and provide some
references for the predictions in water prevention and control
in coal mines.
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