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stability using fuzzy rough feature selection
followed by random forest

Pillar stability in underground hard rock mining task is one
of the most challenging safety problems to be determined
during mining task. This stability analysis requires proper
input variables, which are also known as parameters. The
prediction of pillar stability is a key task for which various
machine learning based methodologies are available in the
literature. In this study, we present a novel methodology to
enhance the prediction of the stability of hard rock pillars
by using fuzzy rough feature selection with rank search and
evolutionary search. Initially, irrelevant and redundant
features are removed, using fuzzy rough feature selection
technique. Thereafter, machine learning techniques are used
for reduced dataset and the findings are recorded. Then,
fuzzy rough attribute evaluator is deployed to present the
rank of different features according to their influence. The
work presents schematic representation of the proposed
methodology. Finally, a comparative study of the proposed
approach with the existing techniques is presented. From the
work and discussion, it can be observed that random forest
(RF) is producing the best results till date as the average
accuracy produced by present approach and existing
approach are 83.3% and 79.2% respectively with
percentage split of 80:20.

1. Introduction

illars are one of the important structural feature that
Pare ubiquitous below in mining. It is defined as the in

situ rock mass between two or more underground
openings. The main function of pillars is to provide stability
while mining of reserves. The conventional approach of the
pillars stability is assessed by determination of safety factor,
which is defined as the ratio of pillar strength to the pillar
load. Whenever the safety ratio falls below one, the pillars
fail. The estimation of the pillar load is done by various
methods such as tributary area theory, numerical modelling
and other computational methods. Similarly, strength of the
pillars can be estimated by empirical equations derived from
the analysis of failed and stable cases.
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As mining progress goes deeper and deeper the failure of
pillars becomes more frequent, due to rise in stress. Thus, it
is imperative to design the pillar for safety and to create
economical extraction of ores. Thus, proficient methodology
is essential for designing safe and economical pillars and its
dimensions.

Estimation of the safety for the pillars designed is the
most important aspect in pillar design related problems.
Conventional pillar design methods compromise on the
estimation of mean pillar stress that includes tributary area
concept and analytical methods. Further, for the estimation
of pillar loads two different methods are applied namely,
empirical equations and the numerical modelling tools with
suitable failure criterion (Martin and Maybee (2000); Kaiser
etal. (2011), Malan and Napier (2012)). Some of the empirical
equations are given by Headly and Grant (1972); Potvin et al
(1988); Kraunland and Soder (1987); Sjoberg (1992).

In recent years, analytical, statistical, probabilistic, and
artificial intelligence based methods and their hybrids had
been introduced and conveniently used for designing pillars
in coal and hard rock mining while in past years only
numerical modelling assisted approaches are established and
implemented for this task. Fluctuation in rock mass properties
and mining factors could be incorporated in the hard rock
plan by statistical techniques and point estimation technique
demonstrated by Esterhuizen (1993). Probabilistic approach
for underground pillar stability is examined by Griffiths et al.
(2002); Cauvin et al. (2009). Impact of changeability in
parameters by using Monte Carlo Simulation (MCS), for
example, on uniaxial compressive strength of coal sample,
pillar width, pillar height, entry width and cover depth on
safety factor of the pillar is examined by Ghasemi et al. (2010).
Pillar stability prediction by using support vector machine
and fisher discriminant analysis is shown by Zhou et al.
(2010). Logistic regression prediction of pillar stability in coal
pillar is presented by Waatimena (2014) and important results
are recorded. Apart from this, various kind of Artificial Neural
Networks (ANNs) with combination of different learning
techniques, for example, ensemble or hybrids techniques are
used for pillar stability analysis in past few years. By
combining finite element method, neural networks, and
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reliability analysis MCS is developed by Deng et al. (2003)
for pillar design. Another method by combining four ANNs
such as Multi-Layer Perceptron (MLP) and Radial Basis
Function (RBF) are established for stability prediction of
crown pillar by Tawadrous and Katsabanis (2007). For pillar
stress prediction in bord and pillar method MLP neural
network model is constructed by Monjezi et al. (2011). In
recent days, Ghasemi et al. (2014) created two models for the
assessment and prediction of global stability in room and
pillar coal mines considering the retreat mining conditions by
utilizing the logistic regression and the fuzzy logic methods.
In these investigations, whole data are divided into training
and testing sets.

Machine learning has become consistently more
mathematical and more efficient over the past few years.
Implementations of machine learning algorithms for
predictive data mining models are broadly recognized in
mining and geotechnical field. On account of these
considerations, the main objective of this work is to explore
applicability of different machine learning algorithms for
predicting pillar stability in underground mining. In order to
achieve this goal, firstly, fuzzy rough feature selection with
rank search is applied to obtain non-redundant and relevant
features. Secondly, ranks of the features are calculated by
using fuzzy rough feature evaluator technique. Then,
performance of the various machine learning algorithms is
recorded on both original as well reduced datasets.
Furthermore, confusion matrices for various classifiers are
obtained on percentage split of 80:20. Moreover, the work
presents schematic representation of proposed methodology.
Finally, it reports present Receiver Operating Characteristic
(ROC) curve for the visualization of the experimental results.
The schematic representation of entire study is given in
Fig.1.

The present paper is broadly organized as follows:

Section 2: Materials and methods which include

Calculation of
different feature
vectors

based on performance

Selection of the best model
evaluation parameters

Ranking of different features
according to their
discnminating abality

Different machine
leaming algorithm

Creation of training
sets with fuzzy rough
feature selection

Fig.1 Flow diagram of the proposed methodology
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description of used database, input parameters, classifying
tool and software used.

Section 3: Result and discussion.

Section 4: Conclusion

2. Materials and methods

2 .1 DESCRIPTION OF DATABASE

The data compiled by Lunder and Pakalnis (1997) is used
for conducting the experiments. This is further used
by.Wattimena at el. (2013) and Ghasemi at el (2014) for
comparative and logistic regression study of hard rock pillars
by using various algorithms. This dataset contains 178 hard
rock pillar cases from various mines of Canada. In them 60
cases were stable, 50 cases were unstable and 68 were failed
pillar cases. The details of data is presented in Wattimena
(2014).

2.2 INPUT PARAMETERS

In the above mentioned datasets, two basics input
parameters are discussed that included w/h ratio (pillar width
to pillar height) and ratio of average induced pillar load over
the UCS of the intact rock (PL/UCS). Furthermore, one output
parameter namely: the pillar stability, which is characterized
into three classes namely (a) stable (b) unstable and (c) failed.
The detailed description of the dataset is given in Table 1.

TABLE 1: CHARACTERISTICS OF DATASETS

Data type Parameters Symbols Value
Pillar width to w/h 0.31-4.5
height ratio
Input Average pillar
load to UCS of PL/UCS 0.11-0.67
intact rock ratio
Output Pillar stability 0 for stable
condition PS 1 for unstable
2 for failed

2.3 FEATURE RANKING

Due to importance of features, feature ranking algorithm
namely: fuzzy rough attribute evaluator is carried out to
obtain rank of the features participated in the classification
task. Then, experiments are conducted by using various
classification algorithms by changing the number of features
in the order of most significant to least significant. After
performing the results of these experiments, it is possible to
determine the redundant and irrelevant features and further
remove them from the input feature set. This concept is
extremely efficient when input features are in large number.

2.4 FUZZY-ROUGH SET BASED FEATURE SELECTION TECHNIQUE

Fuzzy rough sets have two primary concepts including
indiscernibility for rough sets and vagueness for fuzzy sets,
the two concepts are established because of the uncertain
knowledge available in various domains. The data of fuzzy
sets always lacks definite boundaries. This is a common way
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of human communication and thinking. Rough sets can
demonstrate ambiguity coming about due to an absence of
information by setting approximations. In the current study,
fuzzy rough set based feature selection technique had been
applied to compute the reduct set, that could be given as
follows as per Jenson and Shen (2008):

Algorithm 1: Fuzzy rough feature selection algorithm:
Input: C, the set of all conditional attributes;

Output: D, the set of decision attribute;

P« {}

Do

Q«P

for each x € (C - P)

ifYp (D) >7o(D)

T«RU {x}

P<—Q

until yp(D) ==Y/D)
return P

2.5 CLASSIFICATION PROTOCOL

The experiments are conducted using different classifiers.
From the experimental results, it could be observed that the
random forest is the best performing algorithm. A brief
description of this algorithm can be given as follows:

Random Forest (RF): RF is a mix of tree indicators to such
an extent that each tree relies upon the estimations of a
random vector inspected freely and with a similar
circulation for all trees in forest. This algorithm was first
created by Brieman L (2001). Vital improvements in
portrayal accuracy had been achieved on account of
growing an outfit of trees and allowing them to cast a
ballot for the most notorious class. In order to build up
these collections, often unpredictable vectors are created
that administer the improvement of each tree in the
gathering. An early point of reference is packing Breiman,
(1999) where to build up each tree an unpredictable
assurance (without substitution) is created, utilizing the
models in the arrangement set. Another model is
randomly from among the K best parts. Breiman (1999)
delivers new planning sets by randomizing the yields in
the first preparing set. Another approach is to pick the
preparation set from an erratic system of loads on the
models in the preparation set. Barandiaran (1998) has
formed different papers on “the irregular subspace”
technique which finishes an arbitrary assurance of a
subset of features to use to develop up each tree.

Each tree is constructed according to following
procedure: (a) Accept the amount of cases in the preparation
dataset is NV; test NV cases randomly. These examples form the
preparation set for building up the tree. (b) At each center
point, m features are picked randomly out everything being
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equivalent, and the advanced split subject to these m
features is used to part the center point. (c¢) Each tree should
be created as tremendous as possible without trimming.
Resulting to building up all trees, another article would then
have the option to be classified as the class name with the
most votes, where each vote is picked by each tree in the
forest.

2.6 PERFORMANCE EVALUATION METRICS

The relative prediction evaluation of the five machine
learning algorithms is performed by utilizing threshold-
dependent and threshold-independent parameters. These
parameters are calculated from the values of the confusion
matrix, namely: True positives (TP), that is the number of
correctly predicted pillar stability, false negatives (FN), that
is the number of incorrectly predicted pillar stability, true
negatives (TN) that is the number of correctly predicted pillar
unstability with failure and false positives (FP) that is the
number of incorrectly predicted pillar unstability with failure.

Accuracy: The percentage of correctly predicted pillar
stability and unstability with failure
P + TN

Accuracy = x 100
TP + FP + TN + FN

Area under curve (AUC): It represents the area under the
receiver operating characteristic curve (ROC), the closer its
value to 1 is, the better will be the predictor. It is considered
as one of the evaluation parameters which are robust to the
imbalance nature of the datasets.

MCC: Mathew’s correlation coefficient is calculated using
the following equation:
TPXTN—FPXFN
J(TP+FP)(TP+EN)(TN+FP)(TN+FN)’

MCC =

It is widely used performance parameter for binary
classifications. An MCC value of 1 is considered the best for
a predictor.

The open source Java based machine learning platform
WEKA 3.8 is used to perform all the experiments in this
study.

2.7 WEKA SOFTWARE

WEKA 3.8 software (Waikato Environment for
Knowledge Analysis), created by an examination group from
the University of Waikato in New Zealand, is a free
programming coordinating a few state of-the-workmanships.
It contains various classifications, attribute selection,
visualization tools and clustering algorithm for predictive
modelling together with graphical representations, which are
very easy to access.

3. Result and Discussion

The experiments are conducted with five different machine
learning algorithms namely: Navie Bayes, Jrip, Multilayer



perception), PART, SMO and Random Forest on the original
as well as reduced datasets containing pillar stability
provided by Wattimena (2013). Firstly, we have applied fuzzy
rough feature selection based on rank search to produce the
reduced datasets by removing irrelevant and redundant
features.

Entire experiments are performed based on the percentage
split of 80:20. The confusion matrix for Navie bayes, Jrip,
Multilayer perception, PART, SMO and Random Forest
models are presented in the Tables 2 to 11.

TABLE 2: CONFUSION MATRIX FOR NAIVE BAYES MODEL BASED ON
PERCENTAGE SPLIT OF 80:20 BASED ON ORIGINAL DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 12 2 0
Unstable (1) 9 1 7 1
Failed (2) 13 1 4 8

TaBLE 3: CONFUSION MATRIX FOR SMO MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON ORIGINAL DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 12 1 1
Unstable (1) 9 1 7 1
Failed (2) 13 1 3 9

TABLE 4: CONFUSION MATRIX FOR JRIP MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON ORIGINAL DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 11 1 2
Unstable (1) 9 2 7 0
Failed (2) 13 1 4 8

TaABLE 5: CONFUSION MATRIX FOR PART MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON ORIGINAL DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 7 6 1
Unstable (1) 9 1 8 0
Failed (2) 13 1 2 10

TABLE 6: CONFUSION MATRIX FOR RF MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON ORIGINAL DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 12 2 0
Unstable (1) 9 2 7 0
Failed (2) 13 1 3 9
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TABLE 7: CONFUSION MATRIX FOR NAIVE BAYES MODEL BASED ON
PERCENTAGE SPLIT OF 80:20 BASED ON REDUCED DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 13 0 1
Unstable (1) 9 1 7 1
Failed (2) 13 1 4 8

TABLE 8: CONFUSION MATRIX FOR SMO MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON REDUCED DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 13 0 1
Unstable (1) 9 1 7 1
Failed (2) 13 1 3 9

TABLE 9: CONFUSION MATRIX FOR JRIP MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON REDUCED DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 11 1 2
Unstable (1) 9 2 7 0
Failed (2) 13 1 3 9

TaBLE 10: CONFUSION MATRIX FOR PART MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON REDUCED DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 13 0 1
Unstable (1) 9 2 7 0
Failed (2) 13 2 3 8

TABLE 11: CONFUSION MATRIX FOR RF MODEL BASED ON PERCENTAGE
SPLIT OF 80:20 BASED ON REDUCED DATASET

Pillar stability Actual Predicated

condition Stable (0) Unstable (1) Failed (2)
Stable (0) 14 12 1 1
Unstable (1) 9 2 7 0
Failed (2) 13 1 1 11

The prediction performances of these algorithms are
recorded in Tables 12 and 13. Furthermore, feature ranking is
performed to obtain the discriminating ability of different
features and recorded in Table 14. From the experimental
results, it could be observed that the values of different
evaluation metrics for various classifiers are better for
reduced dataset when compared to original dataset.
Moreover, it could be concluded that the random forest is
the best performing algorithm with an accuracy of 83.3%,
AUC of 0.920, and MCC of 0.740, that are better than the
previously reported results.
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TABLE 12: PERFORMANCE METRICS FOR DIFFERENT MACHINE LEARNING
ALGORITHM ON ORIGINAL DATASET

Machine learning algorithm Accuracy AUC MCC
Naive Bayes 75.0 0.890 0.652
Jrip 72.2 0.810 0.593
SMO 77.8 0.845 0.674
PART 69.4 0.813 0.581
Random Forest 77.8 0.934 0.691

TABLE 13: PERFORMANCE METRICS FOR DIFFERENT MACHINE LEARNING
ALGORITHM ON REDUCED DATASET

Machine learning algorithm Accuracy AUC MCC
Naive Bayes 77.8 0.912 0.675
Jrip 75.0 0.827 0.628
SMO 80.6 0.854 0.711
PART 77.8 0.877 0.674
Random Forest 83.3 0.920 0.748

TABLE 14: RANKING OF DIFFERENT FEATURE BASED ON FUZZY ROUGH
FEATURE EVALUATOR

Features Rank

w/h 0.04185
‘71/‘% 0.02747
UCS(MPa)o, 0.00745
(MPa)O'p 0.00566

o
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|—J48 (class: 1) — PART (class: 1) — JRip (class: 1) RandomForest (class: 1}|

Fig.2 AUC for various machine learning algorithms on original
dataset

ROC curve is used to perform visual representation of the
classifiers. It is the one of the best way to estimate the overall
performance of different classifiers at different decision
thresholds. The ROC curves for different classifiers are shown
in Figs.2 and 3. The performance of random forest is superior
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Fig.3 AUC for various machine learning algorithms on reduced
dataset

among all the machine learning algorithms applied for
experiment.

4. Conclusion

In this paper, five machine learning algorithms namely: JRip,
PART, SMO, Naive Bayes, and Random Forest are used to
evaluate the hard rock pillar stability prediction. Entire
experiment is performed on a validation technique of
percentage split of 80:20. Firstly, a feature selection approach
based on fuzzy rough set with rank search is applied to
calculate the reduced set. Furthermore, feature ranking is
performed by using fuzzy rough attribute evaluator, that
justified the fact that the major contributing parameters are
w/h and PL/UCS for constructing the models for predicting
the stability of hard rock pillars. Moreover, we explored the
performance of various machine learning algorithms by
applying them on this reduced dataset. From the experimental
results, we observed that performances of various classifiers
are improving after applying fuzzy rough feature selection
technique. The best performance is produced by random
forest with an accuracy of 83.3%, AUC of 0.920, and MCC of
0.740, which is the best result so far.
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