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1.0 Introduction

Titanium superalloys possess particular advantages when
compared to other metals and alloys, and they are presently
employed in a broad variety of applications. There are several
compositions of Ti superalloys, such as Ti6Al4V,
Ti5Al2Sn3Li, Ti6Al6V2Sn, and others, due to their unique
features such as high weight-to-strength ratio, exceptionally
high corrosion resistance, and low weight. The titanium
superalloy Ti6Al4V is the most common. Titanium superalloys
are widely employed in the aerospace, automotive, medicinal,
and marine industries due to their unique properties[1].

A great deal of study is being done on the machining of
titanium superalloys for different operations such as turning,

milling, and drilling. Titanium superalloys are more expensive
and difficult to work with than other alloys because of their
low elastic modulus, great mechanical strength, limited thermal
conductivity, high reactivity at higher temperatures, and so
on because titanium-based superalloys are difficult to turn, it
is recommended that proper tool condition monitoring with
suitable techniques as well as machining conditions and
cutting factors like speed, feed, and depth of cut must be
taken into account[2].

Ti superalloys are most commonly used in applications
that require great dimensional accuracy and precision, as well
as a smooth surface finish. When machining titanium
superalloys, one of the most critical variables to consider is
chatter. Chatter is the most annoying feature of machining

A Deep Study on Machine Learning Techniques
for Tool Condition Monitoring in Turning of
Titanium-based Superalloys

Sanjeet Jakati1, Vishwanath Koti1, Pramodkumar S. Kataraki*2, M. Mazlan3 and M. F. Hamid4

1School of Mechanical Engineering, Ramaiah Institute of Technology, VTU, India.
*2School of Mechanical Engineering, REVA University, India. E-mail: pramodkumar.sk@reva.edu.in
3Advanced Material Research Cluster, Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli,
Kelantan, Malaysia.
4School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong
Tebal, Penang, Malaysia

Abstract

The current state-of-the-art review on tool condition monitoring for turning of titanium-based superalloys is presented in
this paper. Titanium (Ti) superalloys are widely utilised in aerospace industry, automobile industry, petrochemical
applications. Ti superalloys are also used in fabrication of biomedical components due to their outstanding combination of
mechanical properties and strong corrosion resistance at extreme temperatures. But these superalloys are difficult-to-cut
because to their low heat conductivity, low elastic modulus, high strength, and strong chemical resistance. Literature review
highlights the drastic reduction in tool life of titanium superalloys at highspeed and feed rates throughout the machining
process. The review paper focuses on (i) various reasons to deploy tool condition monitoring; and (ii) study of tool condition
monitoring methods based on machine learning techniques to identify the ideal parameters for the prevention of
catastrophic tool failure.

*Corresponding Author

70(10A): 265-270; 2022. DOI: 10.18311/jmmf/2022/31235



266 JOURNAL OF MINES, METALS & FUELS

because it affects quality of the product, rate of production,
and tool life. To increase product quality and tool life, it is
vital to select chatter-free machining settings. The proper
machining parameters have to be used to solve this
problem[3].

The remaining sections of the paper are grouped as
follows:

Section 2 deals with the reasons to deploy tool condition
monitoring. Section 3 discusses numerous studies and
advancements related to the machine learning approach to
anticipate tool failure using an appropriate machine learning
algorithm. Finally, Section 4 gives a conclusion.

Section 2: Reason for Tool Condition
Monitoring

Mechanical failures are a common phenomenon that
occurs in almost all engineering systems (for example, aircraft
technologies, nuclear reactors, and industrial machinery) as a
result of degradation with operation, aging, or unusual
operating conditions. Unusual working circumstances include
wear, corrosion, higher operating temperature, high pressure,
vibrations, bending, and stress.

Engineering system deterioration, as well as breakdowns,
frequently result in increased expenses and reduced output
owing to unanticipated machine downtime. It is vital to
establish a monitoring plan that will allow companies to
organize production stoppages for replaces, inspections, and
upkeep so as to increase production rates while keeping
maintenance expenditures to a minimum [4].

Traditional maintenance tactics, maintenance methods
involve reactionary, preventative as well as predictive
maintenance. The fundamental maintenance approach is
reactive maintenance planning, sometimes called simply
operation-to-failure maintenance management.  A reactionary
plan for upkeep permits devices to run until defects occur on
purpose. The assets are only preserved when they are
required. One disadvantage of reactive maintenance is the
inability to foresee whenever maintenance assets (such as
personnel, machinery cutting tools, and repair spare) would
be required for repairs [5].

Preventive maintenance is changing processes or parts on
a regular basis to ignore problems that occur often. Though
preventative maintenance provides for more constant and
precise planned maintenance, it is costly to implement due to
the need for frequent component or component substitution
at the end of its useful life. Predictive maintenance is a
concept for decreasing the large costs of regular maintenance
that involves scheduling repair actions based on performance
and reliability or circumstances rather than time. The purpose
of predictive maintenance is to determine the state of in-
service technology and, eventually, to anticipate when a
product or system will no longer function as planned [6].

Tool wear will reduce processing accuracy and increasing
surface quality throughout cutting operation, and tool loss
will have a direct influence on processing efficiency. Tool wear
is caused by a combination of temperature and pressure in
the cutting action, which is caused by a range of factors.
Accurate estimation is difficult to obtain using the traditional
mathematical paradigm. As a consequence, in order to
fundamentally address these difficulties and accomplish
industrial automation, the tool’s state must be monitored.
Improving manufacturing efficiency, lowering production
costs, and ensuring product quality are all critical.

There are two approaches for monitoring tool status:
direct and indirect. Tool degradation rate is directly assessed
using optical, radioactive, resistive, and computer vision
techniques known as machine vision methods.  By
recognising specific cutting signals linked with wear rate, the
indirect approach provides online real-time monitoring. With
the advancement of technology and artificial intelligence-
based machine learning approaches, tool-based monitoring
(TCM) has made considerable gains in the monitoring of tool
wear rate [7].

When there is a significant degree of wear, the staff will
be prompted to change the tool as soon as possible to avoid
component failure, machining slowdown, and a lengthy work
duration due to tool failure. According to reports, TCM
technology may save up to 40% on manufacturing expenses
while increasing cutting speed by 10% to 50% with the right
TCM procedures.

Section 3: Machine Learning Approach

In the manufacturing industry, the amount of information
generated is at an all-time high. Data from assembly line
sensors, environmental parameters, machine tool data, and
other sorts of data are provided in a range of forms, meanings,
and levels of quality [8].

In the production plant, machine learning techniques are
used. These algorithms can detect patterns that are
complicated and non-linear in a broad variety of data kinds
and sources, and original data is then transformed into feature
spaces or models that may be utilised for prediction, analysis,
categorisation, regression, or forecasting. [9].

Machine learning techniques have been more popular
over the last two decades as a result of a number of variables,
including the availability of large amounts of difficult data
with little visibility, as well as improved accessibility and
capacities of machine learning technologies. Machine
learning, in its fundamental form, allows a computer to fix
issues without being expressly trained to do so [10].

Machine learning is increasingly widely utilised in
production for optimization, control, and debugging, among
other things. Identified the complexity of a rapidly evolving,
dynamic industrial setting, machine learning (ML), as
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component of artificial intelligence (AI), has the ability to
adapt to alterations, reducing the necessity for system
designer to anticipate and respond to every possible scenario.
As a consequence of its capacity to automatically learn from
and adapt to changing surroundings, as well as its ability to
cope with adaptation, ML offers a convincing argument for
why it should be utilised in the manufacturing industry [11].

Machine learning algorithms and techniques have been
effectively applied in manufacturing process optimization,
surveillance and control applications, and condition
monitoring. ML approaches were shown to have considerable
potential for increased quality assurance improvement in
production systems in complicated industrial contexts where
discovering the reasons of errors challenging [12].

There are various machine learning algorithms and
methodologies available, each has unique advantages and
disadvantages. Machine learning has developed into its own
research area. As a result, the purpose of this part is to find
an appropriate machine learning approach for manufacturing
[13].

Many researchers employed various approaches to
anticipate tool wear, which are described below. The
experiment findings show that machine learning can detect the
existing correlation between machining forces and tool flank
wear. It has also been demonstrated that this procedure is
applicable to any sort of workpiece material. Economically, the
cost is slightly higher because to the usage of sensors;
nevertheless, it offers several advantages such as strong
prediction accuracy and simplicity and ease of
implementation [14].

The wear prediction of in-process tools is predicted using
an Artificial Neural Network technique. A back propagation
artificial neural network is used to train a total of 100
experiment data sets. Cutting forces, feed and dept of cut
determined from a dynamometer are the factors considered for
this procedure. The test results show that this approach can
estimate tool degradation with an accuracy of 0.034 m on an
average[15].

Chatter is also observed during the machining process of
titanium super alloys. To predict this chatter, a machine
learning approach is used, which includes algorithms such as
Artificial Neural Network (ANN), Decision Tree (DT), and
support vector machining (SVM). The effectiveness of ML
techniques in forecasting chatter during super alloy
machining was investigated, and ANN was shown to be
superior to the others [16].

ANN model is prepared by using experiment patterns as
shown in Figure,1 depth of cut, feed rate, cutting speed, and
type of cutting tools are used as input layers to the ANN
model. On the other hand, surface roughness was the out
layer in ANN model.

An ANN-based approach is created and successfully
implemented for the examination and modelling of the effects
of uncoated PVD and CVD coated carbide tools with variable
cutting speeds and feeds, as well as the use of dynamometers
and proximity sensors. Figure 2 depicts an ANN technique
for predicting tool wear [18].

In this study, the NN technique is extended to predict tool
wear and diagnose tool fracture before it happens. A variety
of inputs, such as typical cutting input parameters and output

Figure 1: Hidden layer of an ANN design [17]
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parameters like as force signals and tool wear, may be
considered while training a network. As indicated in Figure 3,
the data analysis programme MATLAB, which was employed
in this study, has three well-accepted NN methodologies:
Levenberg Marquardt (LM), Conjugate Gradient Descent
(CGD), and Bayesian Inference (BI), with input and output
layers of three forces on cutting tools [19].

Data must be divided into three groups when using NNs:
i. Data for training: The network has been trained, and

various weights have been computed and tuned.
ii. Network generalisation is assessed using validation

data. When error stops reducing, this data set is
utilised to cease training.

iii. Data for testing: The NN’s precision is assessed using
error values.

Random Forest method is another machine learning
approach for predicting tool wear and failure. Table 1 lists two
sets of statistical characteristics that were extracted. A
dynamometer is used to measure cutting loads in three
orthogonal axes (x, y, z), which are then represented as
channels and tables. The list of channels is shown in Table 2.
The learning technique of this algorithm is to design a club
of decision trees by utilizing bootstrap specimens from the
collection of training data. Each decision tree generates a
reaction based on collection of predictor quantities. Every
internal node in a decision tree indicates a characteristic test,
each branch reflects the test’s outcome, and every leaf node
provides a classified label or a regressive response. A
“regression tree” is a decision tree with a continual response.
Because tool wear symbolises the unavoidability
of mechanical failures, so each single decision tree in a
randomised forest is a regression tree from the stand point of
tool wear analysis. This experiment results using Random
Forest approach shows that it can generate, classify, and
predict the tool failure accurately [21], [22].

Figure 2: ANN Architecture for tool wear prediction [16]

Figure 3: ANN Architecture with forces on cutting tools[20]
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2.0 Conclusions

Based on the evidence supplied in this review, we may draw
the following findings. In general, titanium superalloy
properties such as high temperature strength, poor elastic
elasticity, chemical reactivity, and heat resistance are
regarded to be adverse to titanium machinability.

Mechanical failures are common in practically all
engineering systems (for example, aircraft technologies,
nuclear reactors, and industrial machinery). Degradation and
breakdowns in engineering systems often result in increased
expenses and lost output owing to unplanned equipment
downtime. It is vital to devise a monitoring technique that will
keep track of the cutting tool at all times.

Machine learning approaches have been progressively
used in manufacturing for continuous tool condition
monitoring, optimization, control, and debugging, among
other things, over the last two decades. Many researchers
employed many approaches to forecast tool wear, including
both in and out processes, such as artificial intelligence,
neural networks, and ANN algorithms, which are available on
many platforms such as Python and MATLAB.

According to study, TCM technology may save up to
40% on manufacturing costs while boosting cutting speed by
10% to 50% with the right TCM methodology and machine
learning approaches.
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