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Online learning for video probabilistic
appear ance manifolds recognition algorithm
and its application in coal mines

To monitor the operation of coal mine safety production, an
online learning method of fault identification for coal mine
safety production through video probabilistic appearance
manifolds is proposed in this paper. For a category of the
coal mine equipment safety state, a common representation
of the normal appearances of this category would usually
be learned off-line. From video monitoring of this category,
an appearance model can be learned online through a prior
generic model and successive video. The further details, as
well as both the normal and abnormal appearances, can be
expressed as an appearance manifold. In our algorithm, an
appearance manifold would be approximately estimated by
a series of sub-manifolds, and each sub-manifold is further
refined into a low-dimensional linear sub-space. Thus, the
time required for image recognition is reduced to meet the
demands of real-time image processing. Through
experimental analysis, we can demonstrate that our online
learning algorithm method is an efficient method for video-
based image recognition, and its application in coal mine
safety production has proven to be very effective.

Keywords: Probabilistic appearance manifolds, online
learning, image recognition, coal mine.

1. Introduction

ecause of the rapid improvement of video cameras and

computer networks, it isavery definite possibility that

online learning will be directly used to recognize
appearance manifolds by video streams, and some useful real-
time applications such as coal mine safety production have
been constructed. Existing related algorithms can only
perform the recognition process in an online environment, but
the training process is always implemented in an off-line
environment. This means that all training video data must be
captured prior, and the changes in the video cannot be
reflected in real time. So, off-line training algorithms are not
suitable for real-time tasks. However, online learning
algorithms are practical for processing and training real-time
video streams.

Messrs. Deyong Wang, School of Resource and Environmental
Engineering, Wuhan University of Technology and Deyong Wang and
Wei Wang, School of Information Engineering, PingDingShan
University. E-mail: compuclub@163.com

156

Coa mine production is a high-risk production process,
as there are many safety risks.There are many video
monitoring systems of coal mine safety production being
used in underground work situations. The captured video
sequences can be used to discover hidden dangers in a
timely manner.

In this paper, an online learning method based on
probabilistic appearance manifold for coal mine monitoring
videos is proposed. Probabilistic appearance manifold [1],
which is shown in Fig.1, can be modelled as a series of sub-
manifolds in image space and the connection relation between
these manifolds. Probabilistic appearance manifold was
learned through a training process from video frames. In the
training process, the training video was firstly classified into
several clusters by the K-means agorithm[2]. Image frames
allocated to the same cluster generally come from anal ogous
poses. Principal component analysis (PCA)[3] is a statistical
procedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables called principal
components. The number of principal componentsislessthan
or equal to the number of original variables. This
transformation is defined in such away that the first principal
component has the largest possible variance (that is,
accounts for as much of the variability in the data as
possible), and each succeeding component in turn has the
highest variance possible under the constraint that it is
orthogonal to the preceding components. The resulting
vectors are an uncorrelated orthogonal basis set. PCA is
sensitive to the relative scaling of the origina variables. In
our algorithm, we use PCA to divide each cluster into a series
of low dimensional linear components named sub-spaces. The
connection relation among these components can be
expressed by a matrix, in which adjacent elements represent
successive frames.

The basic process of probabilistic appearance manifold is
evolving a common appearance manifold M to a concrete
manifold M, from a series of video frames. The non-linear
appearance manifold M can be approximately equivalent to
several simpler linear components and their connection
relations. In Fig.1, each C' stands for a principal component
analysis component, and the connection relations between
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Fig.1 Probabilistic appearance manifold

these components are described by the probability P.

Our online learning algorithm is very different from
conventional appearance manifold. Appearance manifold in
our algorithm is derived from amultiple training video frames
dataset which includes various instances of that category. In
each time step, only one frame which is used to update
appearance manifold is available in the frame sequence.

Our online learning algorithm is divided into two steps.
Thefirst step is appearance estimation; in this step our aimis
to discover the best sub-manifold. The second step is
gradually updatingthe final appearance manifold. The aim of
the second step is to update all sub-spaces in the appearance
manifold to minimize distortions.

The rest of this paper is organized as follows. In section
2, weintroduce the relevant work. In section 3, amathematical
framework for the algorithm is introduced. An image motion
tracking algorithm is proposed in section 4. In section 5,
experiments and a results analysis are given. Section 6 isthe
conclusion.

2. Related work

Although there are a large number of existing appearance of
recognised algorithms, studies of online learning algorithms
arefew [4-6].

Brand et al.[4] proposed an incrementa agorithm to track
and identify appearance through sub-space. Since the
appearance manifold is nearly non-linear, only one sub-space
may be inadequate. Therefore, it is difficult to track great
changes in appearance.

According to the neighborhood sub-space of appearance
manifold, Ho et a.[1] proposed an online learning algorithm
by using the most recent video frames.The method can
resolve the problem of tracking great changes in appearance,
but the algorithm does not recognize the whole appearance
manifold, so its application is restricted.

Jepson et al. [5] proposed amixed model for online learning
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algorithms for video appearance recognition.The model
depends on different pixels' distribution to capture an image's
appearance.

Morencyet al. [7] introduced a view-based algorithm for
appearance recognition by eigenspaces. A separate PCA
model for image frame setsis given in this paper.

Cooteset al. [8]proposed a multiple-view appearance
algorithm which could capture an object’s appearance
through views.The algorithm can infer an object’s appearance
by matching approximate poses and views.

3. Mathematical foundation of our algorithm
The appearance manifold is represented by M, which is made

of m non-intersecting sub-manifolds= c* , C?U...UC™,
where C' stands for ith sub-manifold. Each C' can be obtained
by linear approximation through PCA component analysis.
During the whole derivation process, because of the
appearance of the object, each C' acts as a pose sub-space.

In our algorithm, M can be obtained through a simple
training process. First we assign a series of video frames with
anal ogous appearance to m clusters, and then PCA is applied
to each cluster to identify the pose sub-space C'. In addition,
for each video training data set,the average image in each
pose is computed.

For each sub-space C', a series of training samples

{ti,tiz....,t\i,v} from W object, where tij represents the
average image of object j shown in posei.

Let {F,F,,...F} represent a video frame sequence of
object o, and let R, be a scope containing an object clipped
from F,. Each image |, in the training video frame sequence is
asample drawn from the appearance manifold M,. The aim of
our algorithm is updating the appearance manifold M through
identifying image |, at timet.

According to evolving M to M,, our agorithm can be
divided into two steps.The first step is estimating the
pose.The probabilistic estimation of the Cti* given the current
image |, and the previous estimation Ct[ ,» €an be expressed
as.

C’ =arg max p(Cf‘It,Ctj_l) . Q

The second step is updating the M in order to minimize
the appearance recognition error, whose formal definition can
be written as follows:

Eor2 (M, {I;, 1.1y, 1, }) . @
where {10001} represents the previous imfa\g&e _in the
video. But {I,,l,,...,I_;,I,} do not need to be retained in our
online learning algorithm because the useful data on M have
been characterized in each C'.
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3.1 APPEARANCE ESTIMATION

In our algorithm, the C' which maximizes the probability
rlc;
a given C', I

t? 0t

I;, C,j,l ) in Eq. (1) is chosen.We can suppose that for

and Ctj_ , are independent. The probability

p(Cl’CJ) is time invariant. According to the above
assumptions, we can draw the following equation:

p(CI1,CY)  pU1CLC)p(CIC)

p(I1CHp(C'1CY)

where b is a constant to ensure a correct probability
distribution.

©)

C! which can be expressed by an affine sub-space,
S = (C,S,A, P) where c is the center of the sub-space, 9

is the eigenvector matrix, A 1is the diagonal matrix of

eigenvalues, and P is the quantity of video samples which
were used to identify the sub-space.

The linear transformation from I to § can be defined as
follows:

Y= Yaser V) = (@' (I, — ©) - @

So the similarity probability can be written as:
p,1C) =p(1,18) =
1 5y
exp(——() ==+~
PC75(255)
M M
en) [
r=1

where N represents the space of the image, M represents the
sub-space of a pose, and S and d* (I,, S) represent the
distance between a video image /, and sub-space S. We select

1

the parameter Pas E /1M 4

L,
exp(— 5 d=(1,S8))

T NG
(2np) *

Y B o

The geometric interpretations of Eq.(5) are shown in Fig.2.

The probability p(Ci’C'i) denotes the transition

Fig.2 Geometric interpretation of pose sub-space
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probability between sub-spaces. It can capture the motion of
C.f )
represents the motion possibilities from C' to ¢/ if the two
poses are discrete.

i

an object in the training image frame. The p(C

3.2 VIDEO IMAGE APPROXIMATION

Before updating the appearance manifold M, we should
determine which sub-space Cti* the I, belongs to.The
specific steps are as follows:

If the current machine state in the training video looks like
a combination of some states from the pre-training data set,
then the machine state probably is the same combination of
other states in all other appearances as well.

More specifically, we would discover a series of K nearest
neighbours {Zl’ , Z;,,,,, Z;(} of I, from the pre-training

sample video images {xll ,x; ,...,xé,} for the sub-space

C

;o

The K nearest neighbours can be used to approximate /,
through a set of coefficients w_ which would be used to
construct the objective function:

X 2
min |/, —Zwrz':
r=

©

12

Let {le 2 [Q} represent the average image frames

of another sub-space ¢/, where 7 r’ and ka contain the same

object appearance.

The coefficients w, in Eq.(6) can be used to compute [ t'i

for pose j through the image frame set {le,Z‘Zi,---,Zé}
through the following formula:
K
=% wz 7
e )
The final results would be a series of machine images for
all other appearances.

3.3 SUB-SPACE UPDATE

After we have processed the images for each sub-space
C', we should update the eigenspace model of C' with the
sample.

There were a lot of available algorithms based on
updating the eigenbases [9-12]. But almost all algorithms
updated the eigenbases without storing the previous training
samples. In this paper, we use an algorithm that gradually
updates the sub-space for a fixed appearance.

Supposing that we are going to gradually update the
current sub-space S specified by (C, 9, A, P), an updating
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sub-space S’ specified by (C',ﬁ',A',P +1) with the new
observing variable can minimize the reconstruction error. So
the above problem is in fact equal to solving the
eigenproblem.

T9 =9A - ®
where T’ is the new covariance matrix, 7% is the new

eigenvector matrix, and A' is the new diagonal matrix of the
eigenvalues.

The projection of the current sub-space S can be defined
as follows:

g=9"x )

The orthogonal residue vector can be concluded as
follows:

h=x-9g . (10)
where x =x—c.

So c¢"and S’ can be defined individually as follows:

o1
CZE(PC”) . (11
s=L g, P 3%

P+1(1) P+ - (12

The old sub-space can be expanded through adding the
new variable x to its dimension. It can be done through

adding the vector J; to construct an orthonormal basis based

on lﬁ, ﬁJ, where }; is defined as follows:

if ], %0

2 .. (13
0 otherwise

The rotation matrix R is the pivotal point to translate the

orthonormal basis lﬁ, ﬁJ to the eigenbasis ¢} which expands
the sub-space C".

9 = [9,2]1% . (14

According to Egs. (8), (12), and (14), we can obtain the
following equation:

A P P =7 A ,
OB, (—S+ xx )| 9,h |R=RA
P+i(l) P+ 2 [:4] - (15
So S can be expressed as:
S~3A9" - (16)

Through Eqgs. (15) and (8),Eq. (14) can be further
expressed as:
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P A O P |gd ve ,
—_ + R=RA
(P+1{0 o} (P+1)2|:yg v }) - A7

where ¥ represents ;7 % .

Now all variables have been updated in the new pose sub-
space.The new c’ is updated by Eq. (10). The new
eigenvalues A' can be obtained directly by the eigenproblem
in Eq. (16), and the new eigenvectors %' can be obtained by
Eq. (14) through R.

The rotation matrix R is (M + 1) x (M + 1), where M is the

dimension of the sub-space. Because the value of M is very
small, Eq.(17) can be computed effectively in real-time.

3.4 CONSTRUCTING MODEL AND LEARNING PROCESS
For each image from the online training video of the k-th
machine, we will determine which pose sub-space (% it

belongs to by Egs. (1), (2), and (4). Once the sub-space is
detected, we will prefabricate all the possible images in other
poses by Eqs.(5) and (6).Through these images, we will use
all the formulas from Eqs.(7) to (17) to update the variables
denoting all sub-spaces. Finally, the transition matrix can be
obtained by adding up the transitions between various pose
manifolds found in the video frame sequence:

T, p(CH | C¥)+8(1, eC*) (I, , eCY)

p(CYICYY = : !
T +5(1,eC")5 (1, eC)

(18)

If there is the smallest probabilistic to sub-space C¥ for

1, 5(], eC” ):1 and otherwise it would be 0. T,

represents the accumulation value of transitions between CX
and CV.

The advantage of our online learning recognition
algorithm is demonstrated by our experiments.The input video
frame is shown in Fig.3.

Our algorithm is compared to another conventional online
updating algorithm. The comparison results are shown in
Fig4.

From Fig. 4, we can see that our algorithm shown in Fig.
4(b) is to assess the sub-space and its updating effect is better
than that of a conventional algorithm shown in Fig. 4 (a).

Fig.3 Two consecutive images of input video frame
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Fig.4 Comparison results of different algorithms

4. Image motion tracking

Our algorithm can be further extended to an image motion
tracking algorithm. Let M represent the common appearance
manifold which consists of a set of sub-spaces C', and let

{Fl, F,,... F FS} represent a sequence of s image frames. In

the tracking algorithm, we will assess the object’s location in
each image frame F,.

GL(o) is a linear group which consists of oxo non-singular
matrices. A sub-group SO(0) is a sub-manifold of GL(0); it
includes o2 elements and o+o(o-1)/2 constraints.

For the oxo matrix I, the spaceT(SO(0)) of the element of
SO(o) is a set of oxo skew-symmetric matrices. For a point

oe S O(o), the space at the point would be computed by a
rotation of 7(SO(0)) as follows:

T, (SO(0)) = {OX | X € T,(SO(n))} . (19)

With the above formula, the metric SO(n) becomes a
Riemannian manifold. By using the Riemannian manifold,
lengths of paths on a manifold can be defined.

We define o : [0,1] - SO(O) to be a path on SO(0) which
is different everywhere on section [0,1]. For any two points
P.,P, e SO(o), which can define a distance between them,
the distance starts at P, and ends at P,

d(P,P,)= inf [ dat) da®)),,
{a[0,1]1550(0)ja (0)=0;, @ (1)=0,}{ J0 dt dt

(20)
To help track image motion, we illustrate the motions of
tangent planes in Fig.5.

The motions of the exponential map are shown in Fig,6.

Let f(u, F) represent the mapping function which can give
a sub-image / cropped from the rectangular region.

Our image motion tracking algorithm can be defined as an
optimization problem as follows:

u = arg max p(f (u, F,)| c’) - QD

where p(I |C ,i_l) had been defined in Eq. (5); it represents the

similarity between the image I and sub-space ¢/ . The above
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Fig.5 Illustration of tangent spaces of image motion

Fig.6 Exponential map of image motion

Eq. (21) can be evaluated by a set of sub-images.

Our image motion tracking algorithm can be defined in
detail as follows:

Input parameters: ((p, S ):

(P={Cox,wy,ww,60h,w9} represents a collection of 5
parameters for sampling regions.

S represents the number of regions for each frame.

Output: (I, u™):

I" denotes the image of the tracked object.

u" denotesthe region position of I"on the screen.

Model parameters: (m, n, C', T, u"):

m represents the number of sub-spaces of the appearance
manifold M.

n represents the number of dimensions of the linear sub-
spaces C'.

C' represents the i-th pose sub-space, which is denoted
by a collection of images.
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T represents an mxm probability transition matrix for the

tracked object where each point is the probability p(C i‘C / )

u'=(x,y, w, h, q ) represents a rectangular region in the
image centered at (x, y) and of the size (w, h) with the
orientation q.

Through our tracking algorithm, we can construct a
pyramid structure for the two video frame sequences P and
0, and in Fig. 7, we can plot the distribution of all of the video
frames from the two frame sequences P and Q.

Fig.7 Projection of image frames of videos P and Q

5. Experiments

We have conducted experiments with large video data sets
to compare our algorithm with the SLEMD method[13]. In the
experiment process, we called our algorithm and the SLEMD
method level-1 and level-2, respectively.

The average precision of the two algorithms for image
frame sequences under No Align is shown in Fig.8.

All of the motion tracking of the video frame sequences
was also compared to other recognition algorithms. The
comparison results are shown in Table 1.

The comparison of the probabilistic manifold recognition
using our online algorithm, off-line algorithm [1], as well as
three other conventional recognised algorithms is shown in
Table 1.The comparison results show that our online learning
recognised algorithms are much better than other
conventional recognised algorithms.

TABLE 1: COMPARISON OF MOTION IMAGE RECOGNISED ALGORITHMS

Algorithm Accuracy

Videos w/o Videos with

occlusion occlusion
Online learning 93.7 91.2
Off-line learning 95.2 88.7
Eigen-recognition 68.2 57.2
Fisher-recognition 70.2 63.4
Nearest neighbour 81.6 77.3
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Fig.8 Comparison with different temporal boundaries for the two
algorithms

6. Conclusions

In this paper, a novel online learning recognised algorithm
through constructing an appearance manifold from a video
frame sequence is proposed. Our algorithm’s effectiveness for
video-based machine recognition and tracking in coal mines
has been demonstrated through a considerable amount of
experimental work.But our algorithm for tracking image
motions can not track those objects without a known
class.More research needs to be done in the future on how
to track unknown objects.
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