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Inversion of rheological parameters of
surrounding rocks in a mine roadway based

on BP neural network

For weak rock mass with notable rheological property,
instability is mostly caused by flowing deformation. As the
basis for the design of roadway supporting structure, the
rheological parameters of surrounding rocks are of great
importance. Unfortunately, the rheological parameters
obtained from indoor tests often fail to reflect the geological
defects in a large research area due to the impact from
constraints of sampling representativeness, sampling
disturbance and testing technical level. What is worse, field
tests are time-consuming, unrepeatable and costly. To solve
these problems, this paper conducts inversion of the
rheological parameters of surrounding rocks based on the
BP neural network. Taking a mine roadway as an example
and considering the vault subsidence data in the entrance
section, the author applies FLACSP in numerical simulation,
adopts BP neural network for network learning and sample
training, and performs displacement inversion of the
rheological parameters of the surrounding rocks in the
section.
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1. Introduction

he research on rock rheological property could be
traced back to the 1930s. In 1939, Griggs [1] suggests

that creep deformation takes place when the load
reaches 12.5-80% of the failure load and employs the
logarithm empirical equation to describe the constitutive
relation of rock rheology on the basis of compression-creep
tests on sandstones, argillite and siltstones. In 1991,
Professor Chen Zongji [2] designs atorsional creep apparatus
to perform torsional creep test on sandstonesin Yichang and
proposes a hypothesis regarding the origin and formation of
the “enclosed” stress. Besides, the professor examines the

Messrs. Hongmei Liu and Rong Li, Department of Information
Technology, Beijing Vocational College of Agriculture, Beijing 102
442, Xia Meng*, Architectural Design and Research Institute of
Tsinghua University Co. Ltd., Beijing 100 084 and Wei He,
Department of Civil Engineering, Tsinghua University, Beijing 100
084, China. Email: 240498175@qg.com

JOURNAL OF MINES, METALS & FUELS

release of internal strain energy, conducts 3D expansion to
the test equations proposed by Griggs, and takes material
parameters as the scalar functions of the stress invariant.

In 1991, Shi Yuchuan et al. [3] hold afield survey targeted
at the weak rock belt of dam abutment on the right bank of
Ertan hydropower station, build the H-K model, arheological
model suitable for the weak rock massin the following indoor
and field rheological tests, and determine the constitutive
equation of the weak rock mass based on the curves from the
field tests and the finite element inversion method. In 2000,
Zhou Huoming et a. [4] from Changjiang River Scientific
Research Institute of Changjiang Water Resources
Commission perform compression-creep tests on the rock
mass of the side slope of the permanent ship lock in the Three
Gorges Dam Project, make comprehensive analysis of the
creep test results on indoor soil mass and field rock mass,
and put forward the method for determining the value of rock
mass creep parameter through inversion of viscoelastic
displacement.

Since the emergence of the artificial neural network, [5-9]
the neural network, especialy the back propagation neural
network (BP neural network), has been effectively employed
to solve non-linear problems and extensively applied in
various fields. Being one of the most commonly used
networks, BP neural network [10] isamultilayer feedforward
network that minimizes the error sum of squares of the network
by using gradient descent method and back propagation to
adjust the weight and threshold of the network.

This paper, therefore, applies the BP neural network in
inversion of rheological parameters of surrounding rocks. The
application can effectively resolve the difficulties in
undermining the rheological parameters resulted from testing
conditions and external environment. Moreover, taking amine
roadway as example and considering the vault subsidence
data in the entrance section, this paper applies FLAC®P in
numerical simulation, adopts BP neural network for network
learning and sample training, and performs displacement
inversion of the rheological parameters of the surrounding
rocks in the section.
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2. Egtablishment of the numerical calculation
modéd for roadway excavation

The process of soft rock roadway excavation and support is
undoubtedly related to the stress path because it is mainly
about the loading and unloading surrounding rocks. In this
sense, the reliability of inversion results hinges on the actual
simulation of the excavation and supporting process. Hence,
the author takes a mine roadway as example for modelling.

According to engineering geological mapping and drilling,
the rock mass in the roadway areaisformed in the Yanshanian
period (r.%). In the exposure zone, the formation lithology is
granodiorite (r.%), lying below the aluvial soil layer of the
quaternary system. The surrounding rocks near the roadway
section are severely-to-medially weathered granodiorite. The
relatively hard rock has 3 groups of cracks distributed by
volume gap rate v=15 pieces'm3. There is trickling water at
the entrance and exit of the roadway with the [BQ] value
ranging from 251 to 350. The roadway is constructed by the
three-bench method as a guarantee of construction safety
and quality.

2.1 BOUNDARIES OF COMPUTATIONAL SIMULATION

According to Saint-Venant's Principle, the influence from
excavation on surrounding rocks gradually disappears as the
excavation position moves farther away. The target areawithin
the boundaries of computational simulation should be
determined through comprehensive consideration of
computational efficiency and accuracy. After thorough
consideration of factors like the geology in the roadway
region, the target of computational simulation is determined
as the area within the following boundary lines: the left and
right lines are 75m away from the center point of the grotto,
the bottom line is 53m away from the point, the upper lineis
the terrain surface, and the direction of roadway excavation
is 100m. In the model, the surrounding rocks and the first
lining are simulated with hexahedron block units and cable
bolt units. As shown in Fig.1, there are in total 347,400 units
and 361,479 nodes.

The steel arch centering is subjected to the equivalent
numerical simulation, that is, the effect of steel arch centering
is converted to the effect of shotcrete. The goa isto improve
the rigidity and elasticity modulus of the shotcrete. The
roadway bolts are simulated with cable bolt units because the
bolts are mainly characterized by axia strength. Figs.1, 2 and
3 respectively illustrate the side view of the computational
model, the equivalent reinforced model of advanced small
pipe, and the cable bolt units of the first lining.

2.2 NUMERICAL SIMULATION OF THE CONSTRUCTION PROCESS

The roadway entrance is excavated by the three-bench
seven-step method for construction, which drivesin 1m at a
time. Each bench is 5m-long and the core soil is 3m long.
Construction steps are as follows (Fig.4):
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Fig.1 Side view of the computational model

Fig.2 Equivalent simulation model based on advanced small pipes

Fig.3 The cable bolt units of the first lining

The roadway is excavated in the following order: First, use
the steel frame set up in the previous cycle to lay a single
layer of advanced small pipes at a circumferential spacing of
0.4m within the 1a upper chamber, and inject durry with water
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Fig.4 Construction procedures for the three-bench with
reserved core soil

cement ratio of 1:1. The advanced small pipes are 5m long
each and the external angle of the vault is between 10° and
15°. Then, cut and excavate core soils 1c, 2¢ and 3c within
the range of 1m by the machine. After excavation of core soils,
excavate the upper bench 1aby 1m and set up the preliminary
supports, i.e. spray 4cm-thick shot concrete, rack the steel
arch centering and place the steel legs. Upon the completion
of bolting, keep spraying cement till it reaches the design
thickness of 28cm. Next, excavate the side wall of the medium
bench 2a 5m behind bench 1, spray 4cm of concrete, set up
theinitial steel arch centering of the medium bench, and place
the steel legs. The side wall of the 2b bench should be
excavated by a certain distance behind the side wall of 2a.
The excavation of 3aand 3b should follow the same order as
that of 2a and 2b.

On this basis, the authors edit the FLACSP roadway
excavation program. Fig.5 displays the sectional view at the
axle center of the roadway after excavation in the designed
range.

3. Parametersfor inversion and range deter mination
3.1 SENSITIVITY ANALYSIS

Based on Nishihara model, this study takes the
degradation of surrounding rocks as the object of inversion

Fig.5 The sectional view at the axle center
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and carries out inversion of 8 parameters. Theoreticaly, al
parameters should be subjected to the inversion. However,
the scale of solution will increase with the number of
parameters for inversion, resulting in the “curse of
dimensionality” [11, 12]. The parameters for inversion are
normally selected by two principles: First, starting from the
design intent, grasp the main contradiction and reduce the
number of objects for inversion; second, select highly
sensitive parameters for inversion [13]. In reference to the
sensitivity analysis for system stability [14], this study
analyzes the sensitivity of objective functions against the
parameters for inversion, sieves out the parameters with huge
impact on objective functions, and thus completes the
selection of parameters for inversion. The values of
parameters having less sensitivity are determined by
experience.

The inversion is performed with surrounding rock
elasticity modulus, cohesive strength, angle of friction, Kelvin
shear modulus, Kelvin coefficient of viscosity and Maxwell
shear modulus. The intermediate values of the spans for
inversion parameters are collected into the benchmark
parameter set. In the analysis of sensitivity of volume
modulus b against vault subsidence u, for example, the
parameters other than density are fixed to their baseline
values. In this way, the authors obtain the relationship
between the density (independent variable) and vault
subsidence (dependent variable) as follows:

U :(b:!b;ﬂ"lqzb;*_l!'--!b;):wk(h() (1)
According to the equation above, authors draw the

system'’s characteristic curve U — ¢, (bk ) , which reflects the

sensitivity of vault subsidence U against parameter d,. Table
1 shows the numerical calculation results of the sensitivity
analysis.

3.2 UNIFORM DESIGN BASED SAMPLE STRUCTURE

The orthogonal design method is one of the most common
and effective approaches for experimental design. It picksthe
representative  points of orthogonality through
comprehensive tests [15]. Six factors are taken into account,
including surrounding rock elasticity modulus (bulk),
cohesive strength (coh), angle of friction (fric), Kelvin shear
modulus (E,), Kelvin coefficient of viscosity (n,) and
Maxwell shear modulus (7). In the displacement inversion,
uniform design table U21 (21°) (Table 2) is employed to divide
each parameter into 10 levelsfor 21 tests and for building the
learning samples and test samples of the neural network.

4. Inversion of surrounding rock parameters
with BP neural network

4.1 FEATURES OF BP NEURAL NETWORK

Artificial neural network is a complex network system
formed by entities and simple neurons connected with each
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TABLE 1. SENSITIVITY ANALYSIS TABLE

Analysis object Bulk/GPa Coh/MPa Ten/MPa 0] EK/GPa.d hK/GPa.d EM/GPa U30/mm
Bulk max 0.815 0.25 0.25 27 4.5 10 3.25 6.32
min 0.345 0.25 0.25 27 4.5 10 3.25 7.86
Coh max 0.58 0.4 0.25 27 4.5 10 3.25 8.02
min 0.58 0.1 0.25 27 4.5 10 3.25 6.04
Ten max 0.58 0.25 0.4 27 4.5 10 3.25 7.24
min 0.58 0.25 0.1 27 4.5 10 3.25 7.44
[0} max 0.58 0.25 0.25 32.5 4.5 10 3.25 7.96
min 0.58 0.25 0.25 21.5 4.5 10 3.25 6.42
EK max 0.58 0.25 0.25 27 8 10 3.25 4.82
min 0.58 0.25 0.25 27 1 10 3.25 10.72
¢K max 0.58 0.25 0.25 27 4.5 15 3.25 4.8
min 0.58 0.25 0.25 27 4.5 5 3.25 8.4
EM max 0.58 0.25 0.25 27 4.5 10 6 6.02
min 0.58 0.25 0.25 27 4.5 10 0.5 8.68
TABLE 2: U26 (21°) TABLE
1 2 3 4 5 6
1 1 4 10 13 16 19
2 2 8 20 5 11 17
3 3 12 9 18 6 15
4 4 16 19 10 1 13
5 5 20 8 2 17 11
6 6 3 18 15 12 9
7 7 7 7 7 7 7
8 8 11 17 20 2 5
9 9 15 6 12 18 3
10 10 19 16 4 13 1
11 11 2 5 17 8 20
12 12 6 15 9 3 18
13 13 10 4 1 19 16
14 14 14 14 14 14 14
15 15 18 3 6 9 12
16 16 1 13 19 4 10
17 17 5 2 11 20 8
18 18 9 12 3 15 6
19 19 13 1 16 10 4
20 20 17 11 2
21 21 21 21 21 21 21

other. It reflects many basic features of human brain, which is
a highly complex non-linear dynamic system [16]. Single
neurons with simple structure and functions are linked up to
form a neural network with complex behaviours. From the
perspective of the connection type of the network topology,
the neural network can be categorized as the feedforward
network and feedback network. (Fig.6) In the feedforward
network, each neuron receives input from the previous layer
and sends outputs to the next layer without feedback. In the
feedback network, all nodes are the computing elements that
receives inputs and forms an undirected graph with outputs
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Fig.6 Structural graph of neural network

[17]. BP neural network is a typical feedforward neural
network.

BP neural network is a multi-layer feedforward neural
network, in which signal inputs or outputs are transmitted
layer by layer. The signals are processed by the input layer,
transmitted to the hidden layer, and sent out from the output
layer. The state of neurons of each layer only affects the state
of neurons of the following layer. In error back propagation,
if the output layer fails to get the expected output, it will
switch to back propagation and adjust the network weight
and threshold according to predicted errors so that the
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predicted outputs of the network could approximate the
expected output. The network topology of the BP neural
network is shown in Fig.7.

Fig.7 Topology of BP network

4.2 AUTHOR INFORMATION

In the inversion process, sample training, test and
computation of the BP neural network are achieved with
computer software. The MATLAB neural network toolbox
provides BP network analysis and design with BP neural
networks, BP algorithms, and improved BP algorithms with
multiple functions. It can be conveniently and intuitively
applied in the BP neural network.

(1) Normalization

Owing to the wide span of input and output vectors, it is
necessary to normalize such vectors and translate them into
data within the range [0, 1] for the purpose of improving the
training effect in the function training. Normalization should
be carried out by the following equation: Full names of
authors are preferred in the author field, but are not required.

A
— Xi — Xmin
Xi=——— )
X — X,

max mij

where X, is the i input of the network, X, is the minimum

input and x___is the maximum input.
max

In addition, counter-normalization is made to the network
output:

yi = ';i (xmax - xmin ) + xmin (3)

where y, is the i network output, y
and y, _is the maximum output.

min 18 the minimum output
(2) Establishment of BP neural network

The feedforward back propagation (BP network) is created
with MATLAB in the following manner [18]:
net = newff (PR, [S, S,...SN,], {TF, TF, ...TFN, }, BTF, BLF,
PF)
Where net = newff: create the feedforward back propagation
network in the form of dialog box;

PR: the Rx2 dimension matrix formed with maximum and
minimum values of input in each group (there are in total R
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groups of input elements);
Si: the length of the ith layer (there are in total NI layers);

TFI: the transmission function, which can be set to
“tansig” (default), “logsig” or “purelin”.

BTF: network training function, which can be set to

CLINNT3

“trainlm” (default), “trainbfg”, “trainrp” or “graingd”.

BLF: BP learning function of weight and threshold, which
can be set to “learngd” or “learngdm” (default).

PF: network error performance function, which can be set
to “mse” (default) or “msereg”.

(3) Design of the neural network structure

In 1989, Robert Hecht-Nielson proved that any
continuous function in any closed interval could be
approached with a BP network with the hidden layer.
Therefore, a 3-layer BP network is capable of mapping any n-
th dimension to the m-th dimension. In this paper, a BP neural
network with a hidden layer is adopted.

Another important issue is the number of nodes of the
hidden layer. However, there is still no unified and
comprehensive theories regarding the issue. If there are too
few nodes in the hidden layer, the network will have low
accuracy due to the difficulty in learning and the want of
training. On the contrary, if there are too many nodes, the
network will face inconsistent fitting and poor generalization
because of the increase of training practice and lengthy
learning time [19].

Hence, the number of nodes in the hidden layer is
determined by the following equations.

n =2n+l N ()
n1=\/n+m+c w5
n, 2log, n w (6

where n, is the number of nodes in the hidden layer; n is the
number of nodes of the input layer; m is the number of nodes
of the output layer; ¢ is a constant ranging from 1 to 10.

In this model, n =9 and m = 6.

According to the above equations, the number of the
nodes of the hidden layer is as follows:

n, =19 )]
n=vn+m+c=5~20 - ®
n =2 (%))

To sum up, the number of nodes in the hidden layer falls
in the range of 4~20. Thus, the number of hidden layers are
set in the range of 4~20 with the goal of minimizing the total
error of the system. The cycles are built according to the
number of hidden layers. Besides, the number of the hidden
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TABLE 3: PARAMETRIC COMBINATION AND FLACS®P CALCULATED VAULT SUBSIDENCE VALUE OF THE TESTING PROGRAM

Bulk Coh fric EK nK EM D2 D4 D6 D8 D10 D12
/GPa IMPa r° /GPa /GPa /GPa /mm /mm /mm /mm /mm /mm
.day

1 0.345 0.145 26.5 5.2 12.5 5.45 0.4196 0.8952 1.4112 1.9632 2.4872 2.9712
2 0.369 0.205 32 2.4 10 4.9 0.4222 0.9178 1.4718 2.0798 2.7298 3.3818
3 0.392 0.265 25.9 6.95 7.5 4.35 0.3562 0.798 1.3266 1.9166 2.4946 3.0106
4 0.416 0.325 31.4 4.15 5 3.8 0.4526  1.0252 1.7152 2.4832 3.2712 4.0172
5 0.439 0.385 25.4 1.35 13 3.25 0.3776  0.8428 1.3714 19656 2.6136 3.2616

6 0.463 0.13 30.9 5.9 10.5 2.7 0.3262 0.7034 1.176 1.714 2.278 2.79
7 0.486 0.19 24.8 3.1 8 2.15 0.3144 0.6632 1.0654 1.5314 2.0014 2.5254
8 0.533 0.31 24.3 4.85 13.5 1.05 0.2006 0.4424 0.761 1.1494 1.6384 2.2324
9 0.557 0.37 29.8 2.05 11 0.5 0.1428 0.4166 0.829 1.328 1.93 2.708
10 0.58 0.115 23.7 6.6 8.5 5.73 0.3744 0.8094 1.3064 1.8124 2.3004 2.7564
11 0.604 0.175 29.2 3.8 6 5.18 0.4626 1.0008 1.6018 2.2498 2.9038 3.5018
12 0.627 0.235 23.2 1 14 4.63 0.3466 0.7724 1.2488 1.767 2.301 2.841
13 0.651 0.295 28.7 5.55 11.5 4.08 0.3536 0.8166 1.3306 1.8886 2.4466 2.9666
14 0.674 0.355 22.6 2.75 9 3.53 0.418 0.9322 15322 2.2042 2.8962 3.5922
15 0.698 0.1 28.1 7.3 6.5 2.98 0.263 0.5692 0.9086 1.2906 1.6766 2.0266
16 0.721 0.16 22.1 4.5 14.5 2.43 0.2786 0.6408 1.0756 1.6076 2.2036 2.7776
17 0.745 0.22 27.6 1.7 12 1.88 0.4016 0.8878 1.4418 2.0858 2.7758  3.4858
18 0.768 0.28 21.5 6.25 9.5 1.33 0.2902 0.6244 1.0174 1.4574 1.9314 2.4614
19 0.792 0.34 27 3.45 7 0.775 0.2034 0.5058 0.878 1.344 1.91 2.566
20 0.815 0.4 32.5 8 15 6 0.3616  0.8134 1.287 1.745 2.171 2.513

TABLE 4: NETWORK TEST SAMPLES
Bulk Coh fric EK nK EM D2 D4 D6 D8 D10 D12
/GPa /MPa r° /GPa /GPa /GPa /mm /mm /mm /mm /mm /mm
.day
1 0.51 0.25 30.3 7.65 5.5 1.6 0.305 0.7268 1.1908 1.7728 2.4558 3.2148

layers at the minimum total error of the system istaken asthe
number of nodes of the hidden layer for network training.
Through comparison, it is revealed that the total error of the
system was minimum when the number of nodes of the hidden
layerisn, = 15.

During network training, the rationality of the value
selection of learning rate has a direct impact to the learning
speed, convergence performance and promotion capability. If
the learning rate istoo slow, the training time will be greatly
lengthened and the convergence rate will be slowed down.
In contrast, if the learning rate is too fast, the error function
value will remain on ahigh level, leading to non-convergence
of algorithms. To ensure computational stability, the learning
rate of fixed learning rate algorithms should be as slow as
possible within the permission of the computation time. In
this paper, the learning rate is set as 0.01.

4.3 NETWORK TRAINING AND INVERSION OF RHEOLOGICAL
PARAMETERS OF THE SURROUNDING ROCKS

FLACSP finite element software is adopted for numerical
simulation of parameters at different levels to obtain vault
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subsidence displacement of D2, D4, D6, D8, D10 and D12 with
different combinations of the parameters. In total, 20
parametric combinations are selected as input samples for
neural network training. The corresponding calculated vault
subsidence displacements are taken as the output samples of
network training (Table 3). Therest 1 parametric combination
and its calculated vault subsidence displacement are taken as
the sample for testing the performance of the training network
(Teble 4).

There are 9 neurons on the input layer and 6 on the
output layer. According to the general design principles, the
input layer and the hidden layer are built with the hyperbolic
tangent activation function tansig; the activation function
between the hidden layer and the output layer is purelin; the
training function istrainbfg and the expected error is 0.01. In
Table 3, Columns 7-15 show the displacement data of the
parametric combinations and the displacement values
generated by FLAC3P; Columns 1-6 display the parametric
combinations for inversion, which are imported to the BP
neural network as training samples. Fig.8 records the errors
during the training of samples.
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TaBLE 5: OUTPUT OF NETWORK TEST SAMPLES

Output parameters Bulk/GPa Coh/MPa fric/® EK/GPa nK/GPa EM/GPa.day
0.534 0.236 31.5 7.51 5.318 1.55

displacement inversion of the rheological parameters of the
surrounding rocks in the section. It is proved by tests that
the back analysis is feasible and applicable in the
determination of the rheological parameters of the
surrounding rocks.
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