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The electrical coal consumption in our country presents
non-stationary characteristics of seasonal periodicity and
circular trend while seasonal adjustment can decompose
this sequence into trend cycle element, season element and
irregular component with practical economic meaning.
Before seasonal adjustment, we need to eliminate the impact
of outlier, workday and leap year in the sequence in original
electrical coal consumption and then we can conduct
decomposition on the trend cycle sequence after seasonal
adjustment applying H-P filtering method. After that, we can
select appropriate model to conduct electrical coal demand
forecasting based on different characteristics like long-term
trend, periodic cycle, seasonal factor and irregular
component after decomposition. Through the empirical test
of electrical coal consumption in our country for 192
months, the results indicate that the precision has been
improved significantly in long-term electrical coal demand
forecasting by using the improved seasonal adjustment
model and method.
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1. Introduction

The electrical coal consumption in thermal power
generation accounts for the major proportion of coal
consumption in our country. Similar to electric load,

electrical coal demand is often influenced by non-linear
factors and uncertain factors like feature of thermal power
generation, fluctuation of coal price, adjustment of industrial
structure, climatic change and sudden natural disaster, which
leads to the non-stationary characteristics like tendency,
cyclicity and seasonality in electrical coal consumption
statistical data that serves as time sequence [1-3]. Therefore,
it is very difficult to conduct high-precision electrical coal
demand forecasting.

In recent years, some scholars apply various models and
methods to conduct forecast analysis on the electrical coal
demand in our country. Zhu Fagen et al. applied X-12-ARIMA
model to forecast the short-term electrical coal demand in

China [4-5]; Zhang Dong et al. conducted quantitative
analysis on the long-term development situation of coal
power in our country [6-7]. However, because of the periodic
variation of seasonal factors, it is difficult for the measured
monthly and quarterly electrical coal consumption time
sequence to reflect the economic change in time. Meanwhile,
fluctuation may occur in the electrical coal consumption time
sequence due to the impact of non-linear factors, leading to
the abnormal increase or decrease of individual data in the
sequence. Therefore, it is very difficult to grasp the varying
regulation in the electrical coal consumption sequence, making
it harder making to conduct forecasting.

On this basis, this paper first conducts preliminary
adjustment on the monthly electrical coal consumption data,
eliminating the outlier effect and workday effect in the
electrical coal consumption sequence; after that, three time
sequences of trend cycle, seasonal component and irregular
component can be obtained after seasonal adjustment; then,
we can apply H-P method to separate the long-term trend
sequence and periodic cycle sequence from the trend circular
sequence. On this basis, directing at the characteristics of
each sequence separated, this paper establishes appropriate
forecasting models respectively; finally, this paper combines
the forecasting results of each sequence and obtains the final
forecasting results of electrical coal consumption. The
empirical test of fire power supply standard coal consumption
in our country for 192 months is conducted and the
forecasting results are compared to traditional SARIMA and
Holt-Winters method. The results indicate that we can obtain
superior forecasting results by using the improved seasonal
adjustment model.

2. Establishment, improvement and forecasting of seasonal
adjustment model

2.1 ESTABLISHMENT OF SEASONAL TIME SEQUENCE MODEL

Statistics show that electrical coal demand presents non-
stationary seasonal variation rule on a quarterly or monthly
period [8-9]. The time sequence {yt} of non-stationary
electrical coal consumption on the basis of X-11-ARIMA (p,
d, q) measurement model can be transformed into (p, d, q)×(P,
D, Q)s order seasonal time sequence model (SARIMA) after
“D” seasonal difference. The X12-SARIMA models [10-11]
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significance level, which shows that the impact of weekday
and weekend is different. The leap year effect reaches the
significant level at 0.15 significance level. The P value of chi-
square statistics of joint distribution is 0.14. Therefore, we can
eliminate the impact of weekday and leap year effect from the
original sequence.
3.4 SEASONAL ADJUSTMENT DECOMPOSITION

We can obtain periodic cycle, seasonal factor and
irregular component sequence through the seasonal
decomposition conducted on the sequence after preliminary
adjustment. Compared to original sequence, the trend circular
sequence is smoother and the trend characteristics are more
obvious. Apparent seasonal factors can be observed in the
seasonal component sequence, usually peaking at August
and December and bottoming at February. For irregular
component sequence, we can observe that it fluctuates
between 0.
3.5 H-P FILTER

Both long-term trend component and periodic cycle

component exist in the trend circular component sequence,
so we can apply H-P filter method to conduct further
decomposition. The long-term trend sequence and periodic
cycle sequence are shown in Fig.2.

We can see from this figure that the trend sequence is
smoother after decomposition while periodic cycle component
fluctuates between 0. Moreover, the electrical coal
consumption fluctuates wildly from the end of 2007 to 2013.
3.6 FORECASTING OF DECOMPOSITION SEQUENCE

The characteristics of each sequence after decomposition
are different, so we need to select appropriate models to
conduct forecasting.

The improved Holt-Winters method is adopted to conduct
modelling on trend time sequence. We select the first 24 data
to establish the regression model and obtain the initial value
and slope, which is 19.19 and 0.13 respectively; then, we
adopt linear programming and the parameter value of α and
β, which is 1. This indicates that degradation occurs in the
model.

Dummy variable regression is adopted to obtain the value
of seasonal factor in each month for seasonal component
sequence. The value of each month is above the significant
level at 0.01 significance level except January and August; the
value of January is below the significant level at 0.10
significance level while value of August is below the
significant level at 0.10 significance level

For irregular component and periodic cycle sequence, we
need to conduct unit root test to examine the stability of the
sequence. The DF test statistics of periodic cycle sequence
is t = -3.98 and P = 0.00; the DF test statistics of irregular
component sequence is t = -13.02 and P = 0.00. This indicates
that the sequence is stable, and thus we can establish
SARIMA model. Through correlation diagram analysis, the
equation of periodic cycle component sequence can be
established
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The equation of irregular component sequence can be
established

Fig.1 Original series

TABLE 1: TYPE OF OUTLIERS AND STATISTICS

Type of outliers Estimated Standard T value
value of error

parameters

AO2013.02 -17.2961 4.60660 5.96
AO2016.01 -19.3967 4.15069 4.78
AE2015.01 20.1342 2.93181 5.31
LS2008.11 -12.2819 2.41360 -5.36
LS2009.02 -12.7522 2.39829 -5.31

TABLE 2: EFFECTS OF TRADING DAY AND LEAP YEAR

Estimated Standard T value
value of error

parameters

Weekday -0.1347 0.07924 -2.09
Weekend 0.3613 0.22371 1.59
Leap year 2.1707 1.79654 1.13

Fig.2 Series after decomposed on trend and cycle series
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The estimated value of each parameter all reaches the
significant level.
3.7 FORECASTING RESULTS

Based on the established model of each component
sequence, we can conduct earlier forecasting for the period
between Jan 2016 and Dec 2016. After that, we can sum the
forecasting results of each component, which is the
preliminary forecasting results. The weekday and leap year
effect is eliminated during the preliminary adjustment stage,
so we need to adjust for the months with weekday and leap
year effect when forecasting. And we can obtain the final
forecasting results after the adjustment of corresponding
months.

To verify the practical effect of this forecasting method,
we adopt seasonal Holt-Winters model and X12-SARIMA
model to conduct forecasting at the same time and compare
the forecasting results. The percentage error of each
forecasting result, the mean absolute percentage error of 12
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We can know from Table 3 that the MAPE% of forecasting
results of the 12 months selected obtained by the forecasting
method proposed in this paper is the lowest. The second is
Holt-Winters model while the last is seasonal X12-SARIMA
model, which shows that the forecasting effect of the method
in this paper is superior than that of Holt-Winters model and
seasonal X12-SARIMA model and the forecasting results are
more stable.

weekday in the electrical coal consumption sequence and
then to conduct preliminary adjustment; after that, directing
at the periodic cycle characteristics of electrical coal
consumption sequence after seasonal adjustment, we adopt
H-P filter method to obtain the trend sequence and periodic
cycle sequence after decomposition; and then, due to the
differences of characteristics and meaning of each component
sequence after decomposition, we need to select appropriate
models to conduct modelling; finally, we eliminate weekday
and leap year effect when conducting the preliminary
adjustment of electrical coal demand in several months.

Through the analysis of electrical coal consumption
sequence of 192 months in our country and the forecasting
of electrical coal demand of 12 months, the forecasting results
of the forecasting method proposed in this paper is stable and
the forecasting precision is relatively high, proving the
practicability of the forecasting method.
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