Existence Results for Generalized Vector Equilibrium Problems under Upper Sign Continuity

Jump To References Section

Authors

  • Department of Mathematics, College of Basic Science, Tehran Science and Research Branch, Islamic Azad University, Tehran ,IR
  • Department of Mathematics, Razi University, Kermanshah, 67149 ,IR
  • Department of Mathematics, Amirkabir University of Technology, Tehran ,IR

Keywords:

C-Upper Sign Continuity, KKM-Mapping, Generalized Vector Equilibrium Problems, C-Pseudomonotone.

Abstract

In this paper, two kinds of the upper sign-continuity and pseudo-monotonicity in the setting of multivalued bifunctions with moving cones are introduced. Moreover,by applying the new definitions of the upper sign-continuity and pseudo-monotonicity via KKM theory, some existence results of solutions for two kinds of the generalized vector equilibrium problems are established. The results of the paper can be viewed as the extensions of the corresponding results in this area.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2016-12-01

How to Cite

Rahimi, M., Farajzadeh, A. P., & Vaezpour, S. M. (2016). Existence Results for Generalized Vector Equilibrium Problems under Upper Sign Continuity. The Journal of the Indian Mathematical Society, 83(3-4), 351–362. Retrieved from https://www.informaticsjournals.com/index.php/jims/article/view/6615

 

References

Q. H. Ansari, A. P. Farajzadeh and S. Schaible, Existence of solutions of strong vectror equilibrium problems, Taiw. J. Math, 16 (1). (2012), 165-178.

Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vectror equilibrium problems, Nonlin. Anal, 47. (2001), 543-554.

Q. H. Ansari, W.Otteli and D. Schlager, A generalization of vectrorial equilibria, Mathematical Methods of Operations Research, 46. (1997), 147-152.

Q. H. Ansari, A. H. Siddigi and S. Y. Wu, Existence and duality of generalized vectror equilibrium problems, J. Math. Anal. Appl., 259. (2001), 115-126.

Q. H. Ansari and J.C. Yao, An existence result for generalized vectror equilibrium problems, Appl. Math. Letter, 12. (1999), 53-56.

E. Blum, W. Oettli, From optimization and varitional inequalities to equilibrium problems , Mathematics Student, 63. (93), 123-145.

M. Bianchi and R. Pini, Coercivity conditions for equilibrium problems, J. Optim. Theory Appl., 124. (2005), 79-92.

G. Y. Chen and G. M. Cheng, Vector variational inequalities and vector optimization, in: Lecture notes in Economics and Mathematical Systems, 258, 408-416, Springer, Heidelberg, 1987.

G.Y. Chen, X. X. Huang and X. Q. Yang, Vector optimization: multi-Valued and Variational Analysis, Springer, Berlin, (2005).

J. Dugundji, A. Granas, Fixed Point Theory, Springer-Verlag, Berlin, 2003.

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann, 266. (1984), 519-537.

K. Fan, A minimax theorem for vector-valued functions, J. Optim. Theory Appl, 60. (1989), 19-31.

A. P. Farajzadeh and A. Amini-Harandi, On generalized implicit vector variational inequality problems, Indian J. Pure Appl. Math, 42 (2). (2011), 127-140.

Y. P. Fang and N. J. Huang, Existence results for generalized implicit vector variational inequalities with multivalued mappings, Indian J. Pure Appl. Math, 36 (11). (2005), 629-640.

A. P. Farajzadeha and J. Zafarani, Equilibrium problems and variational inequalities in topological vector spaces, Optimization, 59 (4). (2010), 485-499.

F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems. In: R.W. Cottle, F. Giannessi, J.L. Lions, (EDs.) Variational Inequalities and Complementarity Problems, 151-186. Wiley, New York, 1980.

N. Hadjisavvas, Continuity and maximality properties of pseudomonotone operators, J. Convex Analysis, 10. (2003), 465-475.

A. N. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlin. Anal, 52. (2003), 621-635.

M. A. Noor and W. Oettli, On generalized nonlinear complementarity problems and quasi equilibria, Le Math, 49. (1994), 313-331.

N. T. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Math. Nachr, 122. (1985), 231-245.

H. Y. Yin and C. X. Xu, Vector variational inequality and implicit vector complementarity problems, in Vector Variational Inequalities and Vector Equilibria "(F. Giannessi, Eds.), Kluwer, Dordrechet, Holland, (2000) 491-505