Fiedler Linearizations for Higher Order State-Space Systems

Jump To References Section

Authors

  • ,IN

DOI:

https://doi.org/10.18311/jims/2022/25773

Keywords:

Higher Order System, System Matrix, Transfer Function, Zero, Zero Direction, Matrix Polynomial, Eigenvalue, Eigenvector, Matrix Pencil, Linearization, Fiedler Pencil.
65F15, 15A18, 15B57, 15A22.

Abstract

Consider a higher order state space system and associated system matrix S(?). The aim of this paper is to linearize the higher order system preserving system characteristics. That is, we derive a linearized state space system of the given higher order system preserving system characteristics(e.g., controllability, observability, various zeros and transfer function) for analysis of higher order systems which gives the solution for higher order system. We study recovery of zero directions of higher order state space system from those of the linearizations. That is, the zero directions of the transfer functions associated to higher order state space system are recovered from the eigenvectors of the Fiedler pencils without performing any arithmetic operations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-08-23

How to Cite

Behera, N. (2022). Fiedler Linearizations for Higher Order State-Space Systems. The Journal of the Indian Mathematical Society, 89(3-4), 237–261. https://doi.org/10.18311/jims/2022/25773
Received 2020-07-27
Accepted 2022-02-16
Published 2022-08-23

 

References

R. Alam and N. Behera, Linearizations for Rational Matrix Functions and Rosenbrock System Polynomials, SIAM J. Matrix Analysis Appl., 37(2016), pp.354-380. DOI: https://doi.org/10.1137/15M1008622

R. Alam and N. Behera, Recovery of eigenvectors of rational matrix functions from Fiedlerlike linearizations, Linear Algebra Appl., 510(2016), pp.373-394. DOI: https://doi.org/10.1016/j.laa.2016.09.009

R. Alam and N. Behera, Generalized Fiedler pencils for Rational Matrix functions , SIAM J. MATRIX ANAL. APPL., 39(2018), pp. 587-610. DOI: https://doi.org/10.1137/16M1108200

E.N. Antoulas and S. Vologiannidis, A new family of companion forms of polynomial matrices, Electron. J. Linear Algebra, 11(2004), 78–87 DOI: https://doi.org/10.13001/1081-3810.1124

N. Behera, Fiedler linearizations for LTI state-space systems and for rational eigen-value problems, PhD Thesis, IIT Guwahati, 2014

N. Behera, Generalized Fiedler pencils with repetition for rational matrix functions, Filomat, 34, (11) (2020), 3529–3552. DOI: https://doi.org/10.2298/FIL2011529B

M. I. Bueno and F. De Teran, Eigenvectors and minimal bases for some families of Fiedler-like linearizations, Linear and Multilinear Algebra, (2013), pp. 1-24. DOI: https://doi.org/10.1080/03081087.2012.762713

F. De Teran, F. M. Dopico, and D. S. Mackey, Fiedler companion linearizations and the recovery of minimal indices, SIAM J. Matrix Anal. Appl., 31(2009/10), 2181–2204. DOI: https://doi.org/10.1137/090772927

I. Gohberg, P. Lancaster and L. Rodman, Matrix polynomials,Academic Press Inc., New York London, 1982.

D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), 971–1004 DOI: https://doi.org/10.1137/050628350

T. Kailath, Linear systems, Prentice-Hall Inc., Englewood Cli?s, N.J., 1980.

L. Mazurenko and H. Voss, Low rank rational perturbations of linear symmetric eigen-problems, ZAMM Z. Angew. Math. Mech., 86(2006), 606–616. DOI: https://doi.org/10.1002/zamm.200510267

Rosenbrock, H. H., State-space and multivariable theory, John Wiley & Sons, Inc., New York, 1970.

A. I. G. Vardulakis, Linear multivariable control, John Wiley & Sons Ltd., 1991.

H. Voss, A rational spectral problem in ?uid-solid vibration, Electron. Trans. Numer. Anal., 16(2003), 93–105.